mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 02:29:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			116 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import sys
 | |
| 
 | |
| import pytest
 | |
| from sqlalchemy import create_engine
 | |
| 
 | |
| from _openmetadata_testutils.pydantic.test_utils import assert_equal_pydantic_objects
 | |
| from metadata.generated.schema.entity.data.table import ColumnProfile
 | |
| from metadata.ingestion.lineage.sql_lineage import search_cache
 | |
| from metadata.workflow.metadata import MetadataWorkflow
 | |
| from metadata.workflow.profiler import ProfilerWorkflow
 | |
| 
 | |
| if not sys.version_info >= (3, 9):
 | |
|     pytest.skip("requires python 3.9+", allow_module_level=True)
 | |
| 
 | |
| 
 | |
| @pytest.fixture(scope="module")
 | |
| def prepare_postgres(postgres_container):
 | |
|     engine = create_engine(postgres_container.get_connection_url())
 | |
|     sql = [
 | |
|         "CREATE TABLE financial_transactions (id SERIAL PRIMARY KEY, amount MONEY);",
 | |
|         "INSERT INTO financial_transactions (amount) VALUES (100.00), (200.00), (300.00), (400.00), (500.00);",
 | |
|     ]
 | |
|     for stmt in sql:
 | |
|         engine.execute(stmt)
 | |
| 
 | |
| 
 | |
| @pytest.fixture(scope="module")
 | |
| def run_profiler(
 | |
|     patch_passwords_for_db_services,
 | |
|     prepare_postgres,
 | |
|     run_workflow,
 | |
|     ingestion_config,
 | |
|     profiler_config,
 | |
| ):
 | |
|     search_cache.clear()
 | |
|     run_workflow(MetadataWorkflow, ingestion_config)
 | |
|     run_workflow(ProfilerWorkflow, profiler_config)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "table_fqn,expected_column_profiles",
 | |
|     [
 | |
|         [
 | |
|             "{service}.dvdrental.public.financial_transactions",
 | |
|             {
 | |
|                 "id": ColumnProfile.model_validate(
 | |
|                     {
 | |
|                         "name": "id",
 | |
|                         "timestamp": 1724343985740,
 | |
|                         "valuesCount": 5.0,
 | |
|                         "nullCount": 0.0,
 | |
|                         "nullProportion": 0.0,
 | |
|                         "uniqueCount": 5.0,
 | |
|                         "uniqueProportion": 1.0,
 | |
|                         "distinctCount": 5.0,
 | |
|                         "distinctProportion": 1.0,
 | |
|                         "min": 1.0,
 | |
|                         "max": 5.0,
 | |
|                         "mean": 3.0,
 | |
|                         "sum": 15.0,
 | |
|                         "stddev": 1.414213562373095,
 | |
|                         "median": 3.0,
 | |
|                         "firstQuartile": 2.0,
 | |
|                         "thirdQuartile": 4.0,
 | |
|                         "interQuartileRange": 2.0,
 | |
|                         "nonParametricSkew": 0.0,
 | |
|                         "histogram": {
 | |
|                             "boundaries": ["1.000 to 3.339", "3.339 and up"],
 | |
|                             "frequencies": [3, 2],
 | |
|                         },
 | |
|                     }
 | |
|                 ),
 | |
|                 "amount": ColumnProfile.model_validate(
 | |
|                     {
 | |
|                         "name": "amount",
 | |
|                         "timestamp": 1724343985743,
 | |
|                         "valuesCount": 5.0,
 | |
|                         "nullCount": 0.0,
 | |
|                         "nullProportion": 0.0,
 | |
|                         "uniqueCount": 5.0,
 | |
|                         "uniqueProportion": 1.0,
 | |
|                         "distinctCount": 5.0,
 | |
|                         "distinctProportion": 1.0,
 | |
|                         "min": "$100.00",
 | |
|                         "max": "$500.00",
 | |
|                         "mean": 300.0,
 | |
|                         "sum": 1500.0,
 | |
|                         "stddev": 141.4213562373095,
 | |
|                     }
 | |
|                 ),
 | |
|             },
 | |
|         ]
 | |
|     ],
 | |
|     ids=lambda x: x.split(".")[-1] if isinstance(x, str) else "",
 | |
| )
 | |
| def test_profiler(
 | |
|     table_fqn,
 | |
|     expected_column_profiles,
 | |
|     db_service,
 | |
|     run_profiler,
 | |
|     metadata,
 | |
| ):
 | |
|     table = metadata.get_latest_table_profile(
 | |
|         table_fqn.format(service=db_service.fullyQualifiedName.root)
 | |
|     )
 | |
|     for name, expected_profile in expected_column_profiles.items():
 | |
|         actual_column_profile = next(
 | |
|             column for column in table.columns if column.name.root == name
 | |
|         ).profile
 | |
|         # the timestamp always changes so we equalize them to avoid comparison
 | |
|         actual_column_profile.timestamp = expected_profile.timestamp
 | |
|         assert_equal_pydantic_objects(
 | |
|             expected_profile,
 | |
|             actual_column_profile,
 | |
|         )
 | 
