mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-13 12:08:47 +00:00

* Fix: Added metadata service * Fix as per comment * Fix changes for py-test * Fix changes for py-test * Fix py-checkstyle
364 lines
13 KiB
Python
364 lines
13 KiB
Python
# Copyright 2021 Collate
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Metadata DAG common functions
|
|
"""
|
|
import json
|
|
from datetime import datetime, timedelta
|
|
from typing import Callable, Optional
|
|
|
|
import airflow
|
|
from airflow import DAG
|
|
from openmetadata_managed_apis.api.utils import clean_dag_id
|
|
from pydantic import ValidationError
|
|
from requests.utils import quote
|
|
|
|
from metadata.data_insight.api.workflow import DataInsightWorkflow
|
|
from metadata.generated.schema.entity.services.dashboardService import DashboardService
|
|
from metadata.generated.schema.entity.services.databaseService import DatabaseService
|
|
from metadata.generated.schema.entity.services.messagingService import MessagingService
|
|
from metadata.generated.schema.entity.services.metadataService import MetadataService
|
|
from metadata.generated.schema.entity.services.mlmodelService import MlModelService
|
|
from metadata.generated.schema.entity.services.pipelineService import PipelineService
|
|
from metadata.generated.schema.tests.testSuite import TestSuite
|
|
from metadata.generated.schema.type import basic
|
|
from metadata.ingestion.models.encoders import show_secrets_encoder
|
|
from metadata.ingestion.ometa.ometa_api import OpenMetadata
|
|
from metadata.orm_profiler.api.workflow import ProfilerWorkflow
|
|
from metadata.test_suite.api.workflow import TestSuiteWorkflow
|
|
from metadata.utils.logger import set_loggers_level
|
|
|
|
try:
|
|
from airflow.operators.python import PythonOperator
|
|
except ModuleNotFoundError:
|
|
from airflow.operators.python_operator import PythonOperator
|
|
|
|
from openmetadata_managed_apis.utils.logger import workflow_logger
|
|
from openmetadata_managed_apis.utils.parser import (
|
|
parse_service_connection,
|
|
parse_validation_err,
|
|
)
|
|
from openmetadata_managed_apis.workflows.ingestion.credentials_builder import (
|
|
build_secrets_manager_credentials,
|
|
)
|
|
|
|
from metadata.generated.schema.entity.services.ingestionPipelines.ingestionPipeline import (
|
|
IngestionPipeline,
|
|
PipelineState,
|
|
)
|
|
from metadata.generated.schema.metadataIngestion.workflow import (
|
|
LogLevels,
|
|
OpenMetadataWorkflowConfig,
|
|
)
|
|
from metadata.generated.schema.metadataIngestion.workflow import (
|
|
Source as WorkflowSource,
|
|
)
|
|
from metadata.generated.schema.metadataIngestion.workflow import WorkflowConfig
|
|
from metadata.ingestion.api.parser import (
|
|
InvalidWorkflowException,
|
|
ParsingConfigurationError,
|
|
)
|
|
from metadata.ingestion.api.workflow import Workflow
|
|
from metadata.ingestion.ometa.utils import model_str
|
|
|
|
logger = workflow_logger()
|
|
|
|
|
|
class InvalidServiceException(Exception):
|
|
"""
|
|
Exception to be thrown when couldn't fetch the service from server
|
|
"""
|
|
|
|
|
|
class ClientInitializationError(Exception):
|
|
"""
|
|
Exception to be thrown when couldn't initialize the Openmetadata Client
|
|
"""
|
|
|
|
|
|
def build_source(ingestion_pipeline: IngestionPipeline) -> WorkflowSource:
|
|
"""
|
|
Use the service EntityReference to build the Source.
|
|
Building the source dynamically helps us to not store any
|
|
sensitive info.
|
|
:param ingestion_pipeline: With the service ref
|
|
:return: WorkflowSource
|
|
"""
|
|
secrets_manager = (
|
|
ingestion_pipeline.openMetadataServerConnection.secretsManagerProvider
|
|
)
|
|
ingestion_pipeline.openMetadataServerConnection.secretsManagerCredentials = (
|
|
build_secrets_manager_credentials(secrets_manager)
|
|
)
|
|
|
|
try:
|
|
metadata = OpenMetadata(config=ingestion_pipeline.openMetadataServerConnection)
|
|
except Exception as exc:
|
|
raise ClientInitializationError(f"Failed to initialize the client: {exc}")
|
|
|
|
service_type = ingestion_pipeline.service.type
|
|
|
|
if service_type == "testSuite":
|
|
service = metadata.get_by_name(
|
|
entity=TestSuite, fqn=ingestion_pipeline.service.name
|
|
) # check we are able to access OM server
|
|
if not service:
|
|
raise InvalidServiceException(
|
|
f"Could not get service from type {service_type}"
|
|
)
|
|
return WorkflowSource(
|
|
type=service_type,
|
|
serviceName=ingestion_pipeline.service.name,
|
|
sourceConfig=ingestion_pipeline.sourceConfig,
|
|
)
|
|
|
|
entity_class = None
|
|
try:
|
|
if service_type == "databaseService":
|
|
entity_class = DatabaseService
|
|
service: DatabaseService = metadata.get_by_name(
|
|
entity=entity_class, fqn=ingestion_pipeline.service.name
|
|
)
|
|
elif service_type == "pipelineService":
|
|
entity_class = PipelineService
|
|
service: PipelineService = metadata.get_by_name(
|
|
entity=entity_class, fqn=ingestion_pipeline.service.name
|
|
)
|
|
elif service_type == "dashboardService":
|
|
entity_class = DashboardService
|
|
service: DashboardService = metadata.get_by_name(
|
|
entity=entity_class, fqn=ingestion_pipeline.service.name
|
|
)
|
|
elif service_type == "messagingService":
|
|
entity_class = MessagingService
|
|
service: MessagingService = metadata.get_by_name(
|
|
entity=entity_class, fqn=ingestion_pipeline.service.name
|
|
)
|
|
elif service_type == "mlmodelService":
|
|
entity_class = MlModelService
|
|
service: MlModelService = metadata.get_by_name(
|
|
entity=entity_class, fqn=ingestion_pipeline.service.name
|
|
)
|
|
elif service_type == "metadataService":
|
|
entity_class = MetadataService
|
|
service: MetadataService = metadata.get_by_name(
|
|
entity=entity_class, fqn=ingestion_pipeline.service.name
|
|
)
|
|
else:
|
|
raise InvalidServiceException(f"Invalid Service Type: {service_type}")
|
|
except ValidationError as original_error:
|
|
try:
|
|
resp = metadata.client.get(
|
|
f"{metadata.get_suffix(entity_class)}/name/{quote(model_str(ingestion_pipeline.service.name), safe='')}"
|
|
)
|
|
parse_service_connection(resp)
|
|
except (ValidationError, InvalidWorkflowException) as scoped_error:
|
|
if isinstance(scoped_error, ValidationError):
|
|
# Let's catch validations of internal Workflow models, not the Workflow itself
|
|
object_error = (
|
|
scoped_error.model.__name__
|
|
if scoped_error.model is not None
|
|
else "workflow"
|
|
)
|
|
raise ParsingConfigurationError(
|
|
f"We encountered an error parsing the configuration of your {object_error}.\n"
|
|
f"{parse_validation_err(scoped_error)}"
|
|
)
|
|
raise scoped_error
|
|
raise ParsingConfigurationError(
|
|
f"We encountered an error parsing the configuration of your workflow.\n"
|
|
f"{parse_validation_err(original_error)}"
|
|
)
|
|
|
|
if not service:
|
|
raise InvalidServiceException(f"Could not get service from type {service_type}")
|
|
|
|
return WorkflowSource(
|
|
type=service.serviceType.value.lower(),
|
|
serviceName=service.name.__root__,
|
|
serviceConnection=service.connection,
|
|
sourceConfig=ingestion_pipeline.sourceConfig,
|
|
)
|
|
|
|
|
|
def metadata_ingestion_workflow(workflow_config: OpenMetadataWorkflowConfig):
|
|
"""
|
|
Task that creates and runs the ingestion workflow.
|
|
|
|
The workflow_config gets cooked form the incoming
|
|
ingestionPipeline.
|
|
|
|
This is the callable used to create the PythonOperator
|
|
"""
|
|
set_loggers_level(workflow_config.workflowConfig.loggerLevel.value)
|
|
config = json.loads(workflow_config.json(encoder=show_secrets_encoder))
|
|
workflow = Workflow.create(config)
|
|
try:
|
|
workflow.execute()
|
|
workflow.raise_from_status()
|
|
workflow.print_status()
|
|
workflow.stop()
|
|
except Exception as err:
|
|
workflow.set_ingestion_pipeline_status(PipelineState.failed)
|
|
raise err
|
|
|
|
|
|
def profiler_workflow(workflow_config: OpenMetadataWorkflowConfig):
|
|
"""
|
|
Task that creates and runs the profiler workflow.
|
|
|
|
The workflow_config gets cooked form the incoming
|
|
ingestionPipeline.
|
|
|
|
This is the callable used to create the PythonOperator
|
|
"""
|
|
|
|
set_loggers_level(workflow_config.workflowConfig.loggerLevel.value)
|
|
|
|
config = json.loads(workflow_config.json(encoder=show_secrets_encoder))
|
|
workflow = ProfilerWorkflow.create(config)
|
|
try:
|
|
workflow.execute()
|
|
workflow.raise_from_status()
|
|
workflow.print_status()
|
|
workflow.stop()
|
|
except Exception as err:
|
|
workflow.set_ingestion_pipeline_status(PipelineState.failed)
|
|
raise err
|
|
|
|
|
|
def test_suite_workflow(workflow_config: OpenMetadataWorkflowConfig):
|
|
"""
|
|
Task that creates and runs the test suite workflow.
|
|
|
|
The workflow_config gets cooked form the incoming
|
|
ingestionPipeline.
|
|
|
|
This is the callable used to create the PythonOperator
|
|
"""
|
|
|
|
set_loggers_level(workflow_config.workflowConfig.loggerLevel.value)
|
|
|
|
config = json.loads(workflow_config.json(encoder=show_secrets_encoder))
|
|
workflow = TestSuiteWorkflow.create(config)
|
|
|
|
try:
|
|
workflow.execute()
|
|
workflow.raise_from_status()
|
|
workflow.print_status()
|
|
workflow.stop()
|
|
except Exception as err:
|
|
workflow.set_ingestion_pipeline_status(PipelineState.failed)
|
|
raise err
|
|
|
|
|
|
def data_insight_workflow(workflow_config: OpenMetadataWorkflowConfig):
|
|
"""Task that creates and runs the data insight workflow.
|
|
|
|
The workflow_config gets created form the incoming
|
|
ingestionPipeline.
|
|
|
|
This is the callable used to create the PythonOperator
|
|
|
|
Args:
|
|
workflow_config (OpenMetadataWorkflowConfig): _description_
|
|
"""
|
|
set_loggers_level(workflow_config.workflowConfig.loggerLevel.value)
|
|
|
|
config = json.loads(workflow_config.json(encoder=show_secrets_encoder))
|
|
workflow = DataInsightWorkflow.create(config)
|
|
try:
|
|
workflow.execute()
|
|
workflow.raise_from_status()
|
|
workflow.print_status()
|
|
workflow.stop()
|
|
except Exception as err:
|
|
workflow.set_ingestion_pipeline_status(PipelineState.failed)
|
|
raise err
|
|
|
|
|
|
def date_to_datetime(
|
|
date: Optional[basic.DateTime], date_format: str = "%Y-%m-%dT%H:%M:%S%z"
|
|
) -> Optional[datetime]:
|
|
"""
|
|
Format a basic.DateTime to datetime. ISO 8601 format by default.
|
|
"""
|
|
if date is None:
|
|
return
|
|
|
|
return datetime.strptime(str(date.__root__), date_format)
|
|
|
|
|
|
def build_workflow_config_property(
|
|
ingestion_pipeline: IngestionPipeline,
|
|
) -> WorkflowConfig:
|
|
"""
|
|
Prepare the workflow config with logLevels and openMetadataServerConfig
|
|
:param ingestion_pipeline: Received payload from REST
|
|
:return: WorkflowConfig
|
|
"""
|
|
return WorkflowConfig(
|
|
loggerLevel=ingestion_pipeline.loggerLevel or LogLevels.INFO,
|
|
openMetadataServerConfig=ingestion_pipeline.openMetadataServerConnection,
|
|
)
|
|
|
|
|
|
def build_dag_configs(ingestion_pipeline: IngestionPipeline) -> dict:
|
|
"""
|
|
Prepare kwargs to send to DAG
|
|
:param ingestion_pipeline: pipeline configs
|
|
:return: dict to use as kwargs
|
|
"""
|
|
return {
|
|
"dag_id": clean_dag_id(ingestion_pipeline.name.__root__),
|
|
"description": ingestion_pipeline.description,
|
|
"start_date": ingestion_pipeline.airflowConfig.startDate.__root__
|
|
if ingestion_pipeline.airflowConfig.startDate
|
|
else airflow.utils.dates.days_ago(1),
|
|
"end_date": ingestion_pipeline.airflowConfig.endDate.__root__
|
|
if ingestion_pipeline.airflowConfig.endDate
|
|
else None,
|
|
"concurrency": ingestion_pipeline.airflowConfig.concurrency,
|
|
"max_active_runs": ingestion_pipeline.airflowConfig.maxActiveRuns,
|
|
"default_view": ingestion_pipeline.airflowConfig.workflowDefaultView,
|
|
"orientation": ingestion_pipeline.airflowConfig.workflowDefaultViewOrientation,
|
|
"dagrun_timeout": timedelta(ingestion_pipeline.airflowConfig.workflowTimeout)
|
|
if ingestion_pipeline.airflowConfig.workflowTimeout
|
|
else None,
|
|
"is_paused_upon_creation": ingestion_pipeline.airflowConfig.pausePipeline
|
|
or False,
|
|
"catchup": ingestion_pipeline.airflowConfig.pipelineCatchup or False,
|
|
"schedule_interval": ingestion_pipeline.airflowConfig.scheduleInterval,
|
|
}
|
|
|
|
|
|
def build_dag(
|
|
task_name: str,
|
|
ingestion_pipeline: IngestionPipeline,
|
|
workflow_config: OpenMetadataWorkflowConfig,
|
|
workflow_fn: Callable,
|
|
) -> DAG:
|
|
"""
|
|
Build a simple metadata workflow DAG
|
|
"""
|
|
|
|
with DAG(**build_dag_configs(ingestion_pipeline)) as dag:
|
|
|
|
PythonOperator(
|
|
task_id=task_name,
|
|
python_callable=workflow_fn,
|
|
op_kwargs={"workflow_config": workflow_config},
|
|
retries=ingestion_pipeline.airflowConfig.retries,
|
|
retry_delay=ingestion_pipeline.airflowConfig.retryDelay,
|
|
)
|
|
|
|
return dag
|