mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 02:29:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			81 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #  Copyright 2021 Collate
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #  http://www.apache.org/licenses/LICENSE-2.0
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| 
 | |
| """
 | |
| OpenMetadata MlModel mixin test
 | |
| """
 | |
| from unittest import TestCase
 | |
| 
 | |
| import pandas as pd
 | |
| import sklearn.datasets as datasets
 | |
| from sklearn.model_selection import train_test_split
 | |
| from sklearn.tree import DecisionTreeClassifier
 | |
| 
 | |
| from metadata.generated.schema.api.data.createMlModel import CreateMlModelRequest
 | |
| from metadata.generated.schema.entity.data.mlmodel import MlModel
 | |
| from metadata.generated.schema.entity.services.connections.metadata.openMetadataConnection import (
 | |
|     OpenMetadataConnection,
 | |
| )
 | |
| from metadata.ingestion.ometa.ometa_api import OpenMetadata
 | |
| 
 | |
| 
 | |
| class OMetaModelMixinTest(TestCase):
 | |
|     """
 | |
|     Test the MlModel integrations from MlModel Mixin
 | |
|     """
 | |
| 
 | |
|     server_config = OpenMetadataConnection(hostPort="http://localhost:8585/api")
 | |
|     metadata = OpenMetadata(server_config)
 | |
| 
 | |
|     iris = datasets.load_iris()
 | |
| 
 | |
|     def test_get_sklearn(self):
 | |
|         """
 | |
|         Check that we can ingest an SKlearn model
 | |
|         """
 | |
|         df = pd.DataFrame(self.iris.data, columns=self.iris.feature_names)
 | |
|         y = self.iris.target
 | |
| 
 | |
|         x_train, x_test, y_train, y_test = train_test_split(
 | |
|             df, y, test_size=0.25, random_state=70
 | |
|         )
 | |
| 
 | |
|         dtree = DecisionTreeClassifier()
 | |
|         dtree.fit(x_train, y_train)
 | |
| 
 | |
|         entity_create: CreateMlModelRequest = self.metadata.get_mlmodel_sklearn(
 | |
|             name="test-sklearn",
 | |
|             model=dtree,
 | |
|             description="Creating a test sklearn model",
 | |
|         )
 | |
| 
 | |
|         entity: MlModel = self.metadata.create_or_update(data=entity_create)
 | |
| 
 | |
|         self.assertEqual(entity.name, entity_create.name)
 | |
|         self.assertEqual(entity.algorithm, "DecisionTreeClassifier")
 | |
|         self.assertEqual(
 | |
|             {feature.name.__root__ for feature in entity.mlFeatures},
 | |
|             {
 | |
|                 "sepal_length__cm_",
 | |
|                 "sepal_width__cm_",
 | |
|                 "petal_length__cm_",
 | |
|                 "petal_width__cm_",
 | |
|             },
 | |
|         )
 | |
| 
 | |
|         hyper_param = next(
 | |
|             iter(
 | |
|                 param for param in entity.mlHyperParameters if param.name == "criterion"
 | |
|             ),
 | |
|             None,
 | |
|         )
 | |
|         self.assertIsNotNone(hyper_param)
 | 
