OpenMetadata/ingestion/tests/unit/test_databricks_lineage.py
Pere Miquel Brull d8e2187980
#15243 - Pydantic V2 & Airflow 2.9 (#16480)
* pydantic v2

* pydanticv2

* fix parser

* fix annotated

* fix model dumping

* mysql ingestion

* clean root models

* clean root models

* bump airflow

* bump airflow

* bump airflow

* optionals

* optionals

* optionals

* jdk

* airflow migrate

* fab provider

* fab provider

* fab provider

* some more fixes

* fixing tests and imports

* model_dump and model_validate

* model_dump and model_validate

* model_dump and model_validate

* union

* pylint

* pylint

* integration tests

* fix CostAnalysisReportData

* integration tests

* tests

* missing defaults

* missing defaults
2024-06-05 21:18:37 +02:00

147 lines
5.4 KiB
Python

# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Databricks lineage utils tests
"""
import json
from datetime import datetime, timezone
from pathlib import Path
from unittest import TestCase
from unittest.mock import patch
from metadata.generated.schema.metadataIngestion.workflow import (
OpenMetadataWorkflowConfig,
)
from metadata.generated.schema.type.basic import DateTime
from metadata.generated.schema.type.tableQuery import TableQuery
from metadata.ingestion.source.database.databricks.lineage import (
DatabricksLineageSource,
)
mock_file_path = Path(__file__).parent / "resources/datasets/databricks_dataset.json"
with open(mock_file_path, encoding="utf-8") as file:
mock_data: dict = json.load(file)
EXPECTED_DATABRICKS_DETAILS = [
TableQuery(
query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nSHOW TABLES IN `test`',
userName="vijay@getcollate.io",
startTime="1665566128192",
endTime="1665566128329",
analysisDate=DateTime(datetime.now(tz=timezone.utc)),
aborted=None,
serviceName="local_databricks1",
databaseSchema=None,
),
TableQuery(
query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nSHOW TABLES IN `test`',
userName="vijay@getcollate.io",
startTime="1665566127416",
endTime="1665566127568",
analysisDate=DateTime(datetime.now(tz=timezone.utc)),
aborted=None,
serviceName="local_databricks1",
databaseSchema=None,
),
TableQuery(
query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nSHOW TABLES IN `default`',
userName="vijay@getcollate.io",
startTime="1665566125414",
endTime="1665566125579",
analysisDate=DateTime(datetime.now(tz=timezone.utc)),
aborted=None,
serviceName="local_databricks1",
databaseSchema=None,
),
TableQuery(
query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nDESCRIBE default.view3',
userName="vijay@getcollate.io",
startTime="1665566124428",
endTime="1665566124730",
analysisDate=DateTime(datetime.now(tz=timezone.utc)),
aborted=None,
serviceName="local_databricks1",
databaseSchema=None,
),
]
mock_databricks_config = {
"source": {
"type": "databricks-lineage",
"serviceName": "local_databricks1",
"serviceConnection": {
"config": {
"token": "random_token",
"hostPort": "localhost:443",
"connectionArguments": {
"http_path": "sql/1.0/endpoints/path",
},
}
},
"sourceConfig": {
"config": {
"type": "DatabaseLineage",
"queryLogDuration": 1,
"resultLimit": 10000,
}
},
},
"sink": {"type": "metadata-rest", "config": {}},
"workflowConfig": {
"openMetadataServerConfig": {
"hostPort": "http://localhost:8585/api",
"authProvider": "openmetadata",
"securityConfig": {
"jwtToken": "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGc"
"iOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE"
"2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXB"
"iEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fN"
"r3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3u"
"d-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
},
}
},
}
class DatabricksLineageTests(TestCase):
"""
Implements the necessary methods to extract
Databricks lineage test
"""
def __init__(self, methodName) -> None:
super().__init__(methodName)
config = OpenMetadataWorkflowConfig.parse_obj(mock_databricks_config)
self.databricks = DatabricksLineageSource.create(
mock_databricks_config["source"],
config.workflowConfig.openMetadataServerConfig,
)
@patch(
"metadata.ingestion.source.database.databricks.client.DatabricksClient.list_query_history"
)
def test_get_table_query(self, list_query_history):
list_query_history.return_value = mock_data
results = self.databricks.get_table_query()
query_list = []
for result in results:
if isinstance(result, TableQuery):
query_list.append(result)
for _, (expected, original) in enumerate(
zip(EXPECTED_DATABRICKS_DETAILS, query_list)
):
expected.analysisDate = original.analysisDate = datetime.now()
self.assertEqual(expected, original)