* feat(profiler): renamed module to * feat(profiler): added dbt-artifacts-parser to test setup.py * feat(profiler): refactor workflow and interface * feat(profiler): linting * feat(profiler): removed old profiler modules * feat(profiler): added support for value and integer range partition * feat(profiler): fixed linting * feat(profiler): added partitionning support for datalake profiler * feat(profiler): removed `ProfilerInterfaceArgs` class * feat(profiler): address comments * feat(profiler): Added `OTHER` as an `IntervalType` for UI type generation
		
			
				
	
	
	
		
			12 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	| title | slug | 
|---|---|
| Run DomoDatabase Connector using Airflow SDK | /connectors/database/domo-database/airflow | 
Run Domo Database using Airflow SDK
| Stage | Metadata | Query Usage | Data Profiler | Data Quality | Lineage | DBT | Supported Versions | |
|---|---|---|---|---|---|---|---|---|
| PROD | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | -- | 
| Lineage | Table-level | Column-level | 
|---|---|---|
| ❌ | ❌ | ❌ | 
In this section, we provide guides and references to use the Domo Database connector
Configure and schedule DomoDatabase metadata and profiler workflows from the OpenMetadata UI:
Requirements
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
For metadata ingestion, kindly make sure add alteast data scopes to the clientId provided.
Question related to scopes, click here.
Python Requirements
To run the DomoDatabase ingestion, you will need to install:
pip3 install "openmetadata-ingestion[domo]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Vertica.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for DomoDatabase:
source:
  type: domodatabase
  serviceName: local_DomoDatabase
  serviceConnection:
    config:
      type: DomoDashboard
      clientId: client-id
      secretToken: secret-token
      accessToken: access-token
      apiHost: api.domo.com
      sandboxDomain: https://<api_domo>.domo.com
      
      # database: database
  sourceConfig:
    config:
      type: DatabaseMetadata
      markDeletedTables: true
      includeTables: true
      includeViews: true
sink:
  type: metadata-rest
  config: {}
workflowConfig:
  # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
  openMetadataServerConfig:
    hostPort: <OpenMetadata host and port>
    authProvider: <OpenMetadata auth provider>2. Configure service settings
Source Configuration - Service Connection
- Client ID: Client ID to Connect to DOMODatabase.
 - Secret Token: Secret Token to Connect DOMODatabase.
 - Access Token: Access to Connect to DOMODatabase.
 - API Host: API Host to Connect to DOMODatabase instance.
 - SandBox Domain: Connect to SandBox Domain.
 
Source Configuration - Source Config
The sourceConfig is defined here:
markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.includeTables: true or false, to ingest table data. Default is true.includeViews: true or false, to ingest views definitions.databaseFilterPattern,schemaFilterPattern,tableFilternPattern: Note that the they support regex as include or exclude. E.g.,
tableFilterPattern:
  includes:
    - users
    - type_test
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest.
Workflow Configuration
The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: auth0
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
Azure SSO
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: azure
    securityConfig:
      clientSecret: '{your_client_secret}'
      authority: '{your_authority_url}'
      clientId: '{your_client_id}'
      scopes:
        - your_scopes
Custom OIDC SSO
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
Google SSO
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: google
    securityConfig:
      secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
  openMetadataServerConfig:
    hostPort: http://localhost:8585/api
    authProvider: okta
    securityConfig:
      clientId: "{CLIENT_ID - SPA APP}"
      orgURL: "{ISSUER_URL}/v1/token"
      privateKey: "{public/private keypair}"
      email: "{email}"
      scopes:
        - token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: auth0
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
try:
    from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
    from airflow.operators.python_operator import PythonOperator
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
default_args = {
    "owner": "user_name",
    "email": ["username@org.com"],
    "email_on_failure": False,
    "retries": 3,
    "retry_delay": timedelta(minutes=5),
    "execution_timeout": timedelta(minutes=60)
}
config = """
<your YAML configuration>
"""
def metadata_ingestion_workflow():
    workflow_config = yaml.safe_load(config)
    workflow = Workflow.create(workflow_config)
    workflow.execute()
    workflow.raise_from_status()
    workflow.print_status()
    workflow.stop()
with DAG(
    "sample_data",
    default_args=default_args,
    description="An example DAG which runs a OpenMetadata ingestion workflow",
    start_date=days_ago(1),
    is_paused_upon_creation=False,
    schedule_interval='*/5 * * * *',
    catchup=False,
) as dag:
    ingest_task = PythonOperator(
        task_id="ingest_using_recipe",
        python_callable=metadata_ingestion_workflow,
    )
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
1. Define the YAML Config
This is a sample config for the profiler:
source:
  type: domodatabase
  serviceName: <service name>
  serviceConnection:
    config:
      type: DomoDatabase
      clientId: clientid
      secretToken: secret Token
      accessToken: access Token
      apiHost: api.domo.com
      sandboxDomain: https://<api_domo>.domo.com
  sourceConfig:
    config:
      type: DatabaseMetadata
     
sink:
  type: metadata-rest
  config: {}
workflowConfig:
  # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
  openMetadataServerConfig:
    hostPort:  http://localhost:8585/api
    authProvider: <OpenMetadata auth provider>
    ```
#### Source Configuration
- You can find all the definitions and types for the `serviceConnection` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/athenaConnection.json).
- The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
Note that the filter patterns support regex as includes or excludes. E.g.,
```yaml
tableFilterPattern:
  includes:
  - *users$
Workflow Configuration
The same as the metadata ingestion.
2. Prepare the Profiler DAG
Here, we follow a similar approach as with the metadata and usage pipelines, although we will use a different Workflow class:
import yaml
from datetime import timedelta
from airflow import DAG
try:
   from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
   from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
from metadata.profiler.api.workflow import ProfilerWorkflow
default_args = {
   "owner": "user_name",
   "email_on_failure": False,
   "retries": 3,
   "retry_delay": timedelta(seconds=10),
   "execution_timeout": timedelta(minutes=60),
}
config = """
<your YAML configuration>
"""
def metadata_ingestion_workflow():
   workflow_config = yaml.safe_load(config)
   workflow = ProfilerWorkflow.create(workflow_config)
   workflow.execute()
   workflow.raise_from_status()
   workflow.print_status()
   workflow.stop()
with DAG(
   "profiler_example",
   default_args=default_args,
   description="An example DAG which runs a OpenMetadata ingestion workflow",
   start_date=days_ago(1),
   is_paused_upon_creation=False,
   catchup=False,
) as dag:
   ingest_task = PythonOperator(
       task_id="profile_and_test_using_recipe",
       python_callable=metadata_ingestion_workflow,
   )