140 lines
3.3 KiB
JSON

[
{
"name": "eta_predictions",
"displayName": "ETA Predictions",
"description": "Deep learning model for predicting estimated time of arrival using historical delivery data and real-time traffic patterns",
"algorithm": "mlmodel",
"dashboard": "sample_superset.eta_predictions_performance",
"mlStore": {
"storage": "mlflow-artifacts:/1/abc123def456/artifacts/model"
},
"sourceUrl": "http://localhost:8088/#/models/eta_predictions",
"mlFeatures": [
{
"name": "distance",
"dataType": "numerical"
},
{
"name": "traffic_density",
"dataType": "numerical"
},
{
"name": "weather_condition",
"dataType": "categorical"
},
{
"name": "day_of_week",
"dataType": "categorical"
}
],
"mlHyperParameters": [
{
"name": "learning_rate",
"value": "0.001"
},
{
"name": "batch_size",
"value": "32"
},
{
"name": "epochs",
"value": "100"
},
{
"name": "dropout_rate",
"value": "0.3"
}
]
},
{
"name": "forecast_sales",
"displayName": "Sales Forecast Predictions",
"description": "Time series forecasting model for predicting future sales based on historical trends and seasonality patterns",
"algorithm": "mlmodel",
"dashboard": "sample_superset.forecast_sales_performance",
"mlStore": {
"storage": "mlflow-artifacts:/2/xyz789abc012/artifacts/model"
},
"sourceUrl": "http://localhost:8088/#/models/forecast_sales",
"mlFeatures": [
{
"name": "historical_sales",
"dataType": "numerical"
},
{
"name": "month",
"dataType": "categorical"
},
{
"name": "promotion_flag",
"dataType": "categorical"
}
],
"mlHyperParameters": [
{
"name": "seasonality_mode",
"value": "multiplicative"
},
{
"name": "changepoint_prior_scale",
"value": "0.05"
},
{
"name": "seasonality_prior_scale",
"value": "10.0"
}
]
},
{
"name": "customer_segmentation",
"displayName": "Customer Segmentation Model",
"description": "Clustering model for customer segmentation based on purchase behavior and demographics",
"algorithm": "mlmodel",
"dashboard": "sample_superset.eta_predictions_performance",
"mlStore": {
"storage": "mlflow-artifacts:/3/seg456cluster/artifacts/model"
},
"sourceUrl": "http://localhost:8088/#/models/customer_segmentation",
"mlFeatures": [
{
"name": "total_purchase_amount",
"dataType": "numerical"
},
{
"name": "purchase_frequency",
"dataType": "numerical"
},
{
"name": "avg_basket_size",
"dataType": "numerical"
},
{
"name": "customer_age_group",
"dataType": "categorical"
},
{
"name": "preferred_category",
"dataType": "categorical"
}
],
"mlHyperParameters": [
{
"name": "n_clusters",
"value": "5"
},
{
"name": "max_iter",
"value": "300"
},
{
"name": "init",
"value": "k-means++"
},
{
"name": "random_state",
"value": "42"
}
]
}
]