mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-09-02 05:33:49 +00:00
179 lines
5.8 KiB
Python
179 lines
5.8 KiB
Python
# Copyright 2021 Collate
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Processor util to fetch pii sensitive columns
|
|
"""
|
|
import traceback
|
|
from typing import List, Optional, cast
|
|
|
|
from metadata.generated.schema.entity.data.table import Column, TableData
|
|
from metadata.generated.schema.metadataIngestion.databaseServiceProfilerPipeline import (
|
|
DatabaseServiceProfilerPipeline,
|
|
)
|
|
from metadata.generated.schema.metadataIngestion.workflow import (
|
|
OpenMetadataWorkflowConfig,
|
|
)
|
|
from metadata.generated.schema.type.tagLabel import (
|
|
LabelType,
|
|
State,
|
|
TagLabel,
|
|
TagSource,
|
|
)
|
|
from metadata.ingestion.api.models import Either, StackTraceError
|
|
from metadata.ingestion.api.parser import parse_workflow_config_gracefully
|
|
from metadata.ingestion.api.step import Step
|
|
from metadata.ingestion.api.steps import Processor
|
|
from metadata.ingestion.models.table_metadata import ColumnTag
|
|
from metadata.ingestion.ometa.ometa_api import OpenMetadata
|
|
from metadata.pii.constants import PII
|
|
from metadata.pii.scanners.column_name_scanner import ColumnNameScanner
|
|
from metadata.pii.scanners.ner_scanner import NERScanner
|
|
from metadata.profiler.api.models import ProfilerResponse
|
|
from metadata.utils.logger import profiler_logger
|
|
|
|
logger = profiler_logger()
|
|
|
|
|
|
class PIIProcessor(Processor):
|
|
"""
|
|
A scanner that uses Spacy NER for entity recognition
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: OpenMetadataWorkflowConfig,
|
|
metadata: OpenMetadata,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.metadata = metadata
|
|
|
|
# Init and type the source config
|
|
self.source_config: DatabaseServiceProfilerPipeline = cast(
|
|
DatabaseServiceProfilerPipeline, self.config.source.sourceConfig.config
|
|
) # Used to satisfy type checked
|
|
|
|
self._ner_scanner = None
|
|
self.confidence_threshold = self.source_config.confidence
|
|
|
|
@property
|
|
def ner_scanner(self) -> NERScanner:
|
|
"""Load the NER Scanner only if called"""
|
|
if self._ner_scanner is None:
|
|
self._ner_scanner = NERScanner()
|
|
|
|
return self._ner_scanner
|
|
|
|
@classmethod
|
|
def create(cls, config_dict: dict, metadata: OpenMetadata) -> "Step":
|
|
config = parse_workflow_config_gracefully(config_dict)
|
|
return cls(config=config, metadata=metadata)
|
|
|
|
def close(self) -> None:
|
|
"""Nothing to close"""
|
|
|
|
@staticmethod
|
|
def build_column_tag(tag_fqn: str, column_fqn: str) -> ColumnTag:
|
|
"""
|
|
Build the tag and run the PATCH
|
|
"""
|
|
tag_label = TagLabel(
|
|
tagFQN=tag_fqn,
|
|
source=TagSource.Classification,
|
|
state=State.Suggested,
|
|
labelType=LabelType.Automated,
|
|
)
|
|
|
|
return ColumnTag(column_fqn=column_fqn, tag_label=tag_label)
|
|
|
|
def process_column(
|
|
self,
|
|
idx: int,
|
|
column: Column,
|
|
table_data: Optional[TableData],
|
|
confidence_threshold: float,
|
|
) -> Optional[List[ColumnTag]]:
|
|
"""
|
|
Tag a column with PII if we find it using our scanners
|
|
"""
|
|
|
|
# First, check if the column we are about to process
|
|
# already has PII tags or not
|
|
column_has_pii_tag = any(
|
|
(PII in tag.tagFQN.__root__ for tag in column.tags or [])
|
|
)
|
|
|
|
# If it has PII tags, we skip the processing
|
|
# for the column
|
|
if column_has_pii_tag is True:
|
|
return None
|
|
|
|
# Scan by column name. If no results there, check the sample data, if any
|
|
tag_and_confidence = ColumnNameScanner.scan(column.name.__root__) or (
|
|
self.ner_scanner.scan([row[idx] for row in table_data.rows])
|
|
if table_data
|
|
else None
|
|
)
|
|
|
|
if (
|
|
tag_and_confidence
|
|
and tag_and_confidence.tag_fqn
|
|
and tag_and_confidence.confidence >= confidence_threshold / 100
|
|
):
|
|
# We support returning +1 tags for a single column in _run
|
|
return [
|
|
self.build_column_tag(
|
|
tag_fqn=tag_and_confidence.tag_fqn,
|
|
column_fqn=column.fullyQualifiedName.__root__,
|
|
)
|
|
]
|
|
|
|
return None
|
|
|
|
def _run(
|
|
self,
|
|
record: ProfilerResponse,
|
|
) -> Either[ProfilerResponse]:
|
|
"""
|
|
Main entrypoint for the scanner.
|
|
|
|
Adds PII tagging based on the column names
|
|
and TableData
|
|
"""
|
|
|
|
# We don't always need to process
|
|
if not self.source_config.processPiiSensitive:
|
|
return Either(right=record)
|
|
|
|
column_tags = []
|
|
for idx, column in enumerate(record.table.columns):
|
|
try:
|
|
col_tags = self.process_column(
|
|
idx=idx,
|
|
column=column,
|
|
table_data=record.sample_data,
|
|
confidence_threshold=self.confidence_threshold,
|
|
)
|
|
if col_tags:
|
|
column_tags.extend(col_tags)
|
|
except Exception as err:
|
|
self.status.failed(
|
|
StackTraceError(
|
|
name=record.table.fullyQualifiedName.__root__,
|
|
error=f"Error computing PII tags for [{column}] - [{err}]",
|
|
stack_trace=traceback.format_exc(),
|
|
)
|
|
)
|
|
|
|
record.column_tags = column_tags
|
|
return Either(right=record)
|