2025-05-18 21:09:53 +08:00
|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 文档图像预处理产线使用教程
|
|
|
|
|
|
|
|
|
|
## 1. 文档图像预处理产线介绍
|
|
|
|
|
|
|
|
|
|
文档图像预处理产线集成了文档方向分类和形变矫正两大功能。文档方向分类可自动识别文档的四个方向(0°、90°、180°、270°),确保文档以正确的方向进行后续处理。文本图像矫正模型则用于修正文档拍摄或扫描过程中的几何扭曲,恢复文档的原始形状和比例。适用于数字化文档管理、OCR类任务前处理、以及任何需要提高文档图像质量的场景。通过自动化的方向校正与形变矫正,该模块显著提升了文档处理的准确性和效率,为用户提供更为可靠的图像分析基础。本产线同时提供了灵活的服务化部署方式,支持在多种硬件上使用多种编程语言调用。不仅如此,本产线也提供了二次开发的能力,您可以基于本产线在您自己的数据集上训练调优,训练后的模型也可以无缝集成。
|
|
|
|
|
|
|
|
|
|
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/main/images/pipelines/doc_preprocessor/02.jpg">
|
|
|
|
|
|
|
|
|
|
<b>通用文档图像预处理产线中包含以下2个模块。每个模块均可独立进行训练和推理,并包含多个模型。有关详细信息,请点击相应模块以查看文档。</b>
|
|
|
|
|
|
|
|
|
|
- [文档图像方向分类模块](../module_usage/doc_img_orientation_classification.md)(可选)
|
|
|
|
|
- [文本图像矫正模块](../module_usage/text_image_unwarping.md)(可选)
|
|
|
|
|
|
|
|
|
|
在本产线中,您可以根据下方的基准测试数据选择使用的模型。
|
|
|
|
|
|
|
|
|
|
<details>
|
|
|
|
|
<summary> <b>文档图像方向分类模块(可选):</b></summary>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>模型</th><th>模型下载链接</th>
|
|
|
|
|
<th>Top-1 Acc(%)</th>
|
|
|
|
|
<th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
|
|
|
|
|
<th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<th>模型存储大小(MB)</th>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<th>介绍</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td>PP-LCNet_x1_0_doc_ori</td>
|
|
|
|
|
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-LCNet_x1_0_doc_ori_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-LCNet_x1_0_doc_ori_pretrained.pdparams">训练模型</a></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td>99.06</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td>2.62 / 0.59</td>
|
|
|
|
|
<td>3.24 / 1.19</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td>7</td>
|
|
|
|
|
<td>基于PP-LCNet_x1_0的文档图像分类模型,含有四个类别,即0度,90度,180度,270度</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
<details>
|
|
|
|
|
<summary> <b>文本图像矫正模块(可选):</b></summary>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>模型</th><th>模型下载链接</th>
|
|
|
|
|
<th>CER </th>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
|
|
|
|
|
<th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
|
|
|
|
|
<th>模型存储大小(MB)</th>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<th>介绍</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td>UVDoc</td>
|
|
|
|
|
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/UVDoc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/UVDoc_pretrained.pdparams">训练模型</a></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td>0.179</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td>19.05 / 19.05</td>
|
|
|
|
|
<td>- / 869.82</td>
|
|
|
|
|
<td>30.3</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td>高精度文本图像矫正模型</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
<details>
|
|
|
|
|
<summary> <b>测试环境说明:</b></summary>
|
|
|
|
|
|
|
|
|
|
<ul>
|
|
|
|
|
<li><b>性能测试环境</b>
|
|
|
|
|
<ul>
|
|
|
|
|
<li><strong>测试数据集:
|
|
|
|
|
</strong>
|
|
|
|
|
<ul>
|
2025-05-20 17:42:04 +08:00
|
|
|
|
<li>文档图像方向分类模型:自建的内部数据集,覆盖证件和文档等多个场景,包含 1000 张图片。</li>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<li> 文本图像矫正模型:<a href="https://www3.cs.stonybrook.edu/~cvl/docunet.html">DocUNet。</a></li>
|
|
|
|
|
</ul>
|
|
|
|
|
</li>
|
|
|
|
|
<li><strong>硬件配置:</strong>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>GPU:NVIDIA Tesla T4</li>
|
|
|
|
|
<li>CPU:Intel Xeon Gold 6271C @ 2.60GHz</li>
|
2025-06-30 20:26:05 +08:00
|
|
|
|
</ul>
|
|
|
|
|
</li>
|
|
|
|
|
<li><strong>软件环境:</strong>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>Ubuntu 20.04 / CUDA 11.8 / cuDNN 8.9 / TensorRT 8.6.1.6</li>
|
|
|
|
|
<li>paddlepaddle 3.0.0 / paddleocr 3.0.3</li>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</ul>
|
|
|
|
|
</li>
|
|
|
|
|
</ul>
|
|
|
|
|
</li>
|
|
|
|
|
<li><b>推理模式说明</b></li>
|
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
|
|
<table border="1">
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>模式</th>
|
|
|
|
|
<th>GPU配置</th>
|
|
|
|
|
<th>CPU配置</th>
|
|
|
|
|
<th>加速技术组合</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td>常规模式</td>
|
|
|
|
|
<td>FP32精度 / 无TRT加速</td>
|
|
|
|
|
<td>FP32精度 / 8线程</td>
|
|
|
|
|
<td>PaddleInference</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td>高性能模式</td>
|
|
|
|
|
<td>选择先验精度类型和加速策略的最优组合</td>
|
|
|
|
|
<td>FP32精度 / 8线程</td>
|
|
|
|
|
<td>选择先验最优后端(Paddle/OpenVINO/TRT等)</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
## 2. 快速开始
|
|
|
|
|
|
2025-05-20 03:29:47 +08:00
|
|
|
|
|
|
|
|
|
在本地使用通用文档图像预处理产线前,请确保您已经按照[安装教程](../installation.md)完成了wheel包安装。安装完成后,可以在本地使用命令行体验或 Python 集成。
|
|
|
|
|
|
2025-06-26 20:32:46 +08:00
|
|
|
|
**请注意,如果在执行过程中遇到程序失去响应、程序异常退出、内存资源耗尽、推理速度极慢等问题,请尝试参考文档调整配置,例如关闭不需要使用的功能或使用更轻量的模型。**
|
|
|
|
|
|
2025-05-18 21:09:53 +08:00
|
|
|
|
|
|
|
|
|
### 2.1 命令行方式体验
|
|
|
|
|
|
|
|
|
|
一行命令即可快速体验 doc_preprocessor 产线效果:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
paddleocr doc_preprocessor -i https://paddle-model-ecology.bj.bcebos.com/paddlex/demo_image/doc_test_rotated.jpg
|
|
|
|
|
|
|
|
|
|
# 通过 --use_doc_orientation_classify 指定是否使用文档方向分类模型
|
|
|
|
|
paddleocr doc_preprocessor -i ./doc_test_rotated.jpg --use_doc_orientation_classify True
|
|
|
|
|
|
|
|
|
|
# 通过 --use_doc_unwarping 指定是否使用文本图像矫正模块
|
|
|
|
|
paddleocr doc_preprocessor -i ./doc_test_rotated.jpg --use_doc_unwarping True
|
|
|
|
|
|
|
|
|
|
# 通过 --device 指定模型推理时使用 GPU
|
|
|
|
|
paddleocr doc_preprocessor -i ./doc_test_rotated.jpg --device gpu
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
<details><summary><b>命令行支持更多参数设置,点击展开以查看命令行参数的详细说明</b></summary>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>参数</th>
|
|
|
|
|
<th>参数说明</th>
|
|
|
|
|
<th>参数类型</th>
|
|
|
|
|
<th>默认值</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<td><code>input</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>待预测数据,必填。
|
2025-06-05 17:43:57 +08:00
|
|
|
|
如图像文件或者PDF文件的本地路径:<code>/root/data/img.jpg</code>;<b>如URL链接</b>,如图像文件或PDF文件的网络URL:<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/demo_image/doc_test_rotated.jpg">示例</a>;<b>如本地目录</b>,该目录下需包含待预测图像,如本地路径:<code>/root/data/</code>(当前不支持目录中包含PDF文件的预测,PDF文件需要指定到具体文件路径)。
|
2025-05-20 15:17:30 +08:00
|
|
|
|
</td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td><code>str</code></td>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<td></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>save_path</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>指定推理结果文件保存的路径。如果不设置,推理结果将不会保存到本地。</td>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>doc_orientation_classify_model_name</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文档方向分类模型的名称。如果不设置,将会使用产线默认模型。</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_orientation_classify_model_dir</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文档方向分类模型的目录路径。如果不设置,将会下载官方模型。</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_unwarping_model_name</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文本图像矫正模型的名称。如果不设置,将会使用产线默认模型。</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_unwarping_model_dir</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文本图像矫正模型的目录路径。如果不设置,将会下载官方模型。</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_doc_orientation_classify</code></td>
|
2025-06-28 23:13:32 +08:00
|
|
|
|
<td>是否加载并使用文档方向分类模块。如果不设置,将使用产线初始化的该参数值,默认初始化为<code>True</code>。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
|
|
|
|
<td><code>bool</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_doc_unwarping</code></td>
|
2025-06-28 23:13:32 +08:00
|
|
|
|
<td>是否加载并使用文本图像矫正模块。如果不设置,将使用产线初始化的该参数值,默认初始化为<code>True</code>。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
|
|
|
|
<td><code>bool</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>device</code></td>
|
2025-06-05 17:43:57 +08:00
|
|
|
|
<td>用于推理的设备。支持指定具体卡号:
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<ul>
|
|
|
|
|
<li><b>CPU</b>:如 <code>cpu</code> 表示使用 CPU 进行推理;</li>
|
|
|
|
|
<li><b>GPU</b>:如 <code>gpu:0</code> 表示使用第 1 块 GPU 进行推理;</li>
|
|
|
|
|
<li><b>NPU</b>:如 <code>npu:0</code> 表示使用第 1 块 NPU 进行推理;</li>
|
|
|
|
|
<li><b>XPU</b>:如 <code>xpu:0</code> 表示使用第 1 块 XPU 进行推理;</li>
|
|
|
|
|
<li><b>MLU</b>:如 <code>mlu:0</code> 表示使用第 1 块 MLU 进行推理;</li>
|
|
|
|
|
<li><b>DCU</b>:如 <code>dcu:0</code> 表示使用第 1 块 DCU 进行推理;</li>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
</ul>如果不设置,将默认使用产线初始化的该参数值,初始化时,会优先使用本地的 GPU 0号设备,如果没有,则使用 CPU 设备。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>enable_hpi</code></td>
|
|
|
|
|
<td>是否启用高性能推理。</td>
|
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td><code>False</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_tensorrt</code></td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td>是否启用 Paddle Inference 的 TensorRT 子图引擎。如果模型不支持通过 TensorRT 加速,即使设置了此标志,也不会使用加速。<br/>
|
|
|
|
|
对于 CUDA 11.8 版本的飞桨,兼容的 TensorRT 版本为 8.x(x>=6),建议安装 TensorRT 8.6.1.6。<br/>
|
2025-06-09 14:59:41 +08:00
|
|
|
|
对于 CUDA 12.6 版本的飞桨,兼容的 TensorRT 版本为 10.x(x>=5),建议安装 TensorRT 10.5.0.18。
|
|
|
|
|
</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td><code>False</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>precision</code></td>
|
|
|
|
|
<td>计算精度,如 fp32、fp16。</td>
|
|
|
|
|
<td><code>str</code></td>
|
|
|
|
|
<td><code>fp32</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>enable_mkldnn</code></td>
|
2025-06-09 10:53:44 +08:00
|
|
|
|
<td>是否启用 MKL-DNN 加速推理。如果 MKL-DNN 不可用或模型不支持通过 MKL-DNN 加速,即使设置了此标志,也不会使用加速。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
|
|
|
|
<td><code>bool</code></td>
|
2025-06-01 18:27:52 +08:00
|
|
|
|
<td><code>True</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-06-12 21:00:47 +08:00
|
|
|
|
<td><code>mkldnn_cache_capacity</code></td>
|
|
|
|
|
<td>
|
|
|
|
|
MKL-DNN 缓存容量。
|
|
|
|
|
</td>
|
|
|
|
|
<td><code>int</code></td>
|
|
|
|
|
<td><code>10</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>cpu_threads</code></td>
|
|
|
|
|
<td>在 CPU 上进行推理时使用的线程数。</td>
|
|
|
|
|
<td><code>int</code></td>
|
|
|
|
|
<td><code>8</code></td>
|
|
|
|
|
</tr>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<tr>
|
|
|
|
|
<td><code>paddlex_config</code></td>
|
|
|
|
|
<td>PaddleX产线配置文件路径。</td>
|
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td></td>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
</tr>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
</details>
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
|
|
运行结果会被打印到终端上,默认配置的 doc_preprocessor 产线的运行结果如下:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
{'res': {'input_path': '/root/.paddlex/predict_input/doc_test_rotated.jpg', 'page_index': None, 'model_settings': {'use_doc_orientation_classify': True, 'use_doc_unwarping': True}, 'angle': 180}}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
可视化结果保存在`save_path`下,可视化结果如下:
|
|
|
|
|
|
|
|
|
|
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/main/images/pipelines/doc_preprocessor/02.jpg"/>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 2.2 Python脚本方式集成
|
|
|
|
|
|
|
|
|
|
命令行方式是为了快速体验查看效果,一般来说,在项目中,往往需要通过代码集成,您可以通过几行代码即可完成产线的快速推理,推理代码如下:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from paddleocr import DocPreprocessor
|
|
|
|
|
|
|
|
|
|
pipeline = DocPreprocessor()
|
2025-05-20 15:56:36 +08:00
|
|
|
|
# docpp = DocPreprocessor(use_doc_orientation_classify=True) # 通过 use_doc_orientation_classify 指定是否使用文档方向分类模型
|
|
|
|
|
# docpp = DocPreprocessor(use_doc_unwarping=True) # 通过 use_doc_unwarping 指定是否使用文本图像矫正模块
|
|
|
|
|
# docpp = DocPreprocessor(device="gpu") # 通过 device 指定模型推理时使用 GPU
|
2025-05-18 21:09:53 +08:00
|
|
|
|
output = pipeline.predict("./doc_test_rotated.jpg")
|
|
|
|
|
for res in output:
|
|
|
|
|
res.print() ## 打印预测的结构化输出
|
|
|
|
|
res.save_to_img("./output/")
|
|
|
|
|
res.save_to_json("./output/")
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
在上述 Python 脚本中,执行了如下几个步骤:
|
|
|
|
|
|
|
|
|
|
(1)通过 `DocPreprocessor()` 实例化 doc_preprocessor 产线对象:具体参数说明如下:
|
|
|
|
|
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>参数</th>
|
|
|
|
|
<th>参数说明</th>
|
|
|
|
|
<th>参数类型</th>
|
|
|
|
|
<th>默认值</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_orientation_classify_model_name</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文档方向分类模型的名称。如果设置为<code>None</code>,将会使用产线默认模型。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>str|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_orientation_classify_model_dir</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文档方向分类模型的目录路径。如果设置为<code>None</code>,将会下载官方模型。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>str|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_unwarping_model_name</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文本图像矫正模型的名称。如果设置为<code>None</code>,将会使用产线默认模型。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>str|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>doc_unwarping_model_dir</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td>文本图像矫正模型的目录路径。如果设置为<code>None</code>,将会下载官方模型。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>str|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_doc_orientation_classify</code></td>
|
2025-06-28 23:13:32 +08:00
|
|
|
|
<td>是否加载并使用文档方向分类模块。如果设置为<code>None</code>,将使用产线初始化的该参数值,默认初始化为<code>True</code>。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>bool|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_doc_unwarping</code></td>
|
2025-06-28 23:13:32 +08:00
|
|
|
|
<td>是否加载并使用文本图像矫正模块。如果设置为<code>None</code>,将使用产线初始化的该参数值,默认初始化为<code>True</code>。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>bool|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>device</code></td>
|
2025-06-05 17:43:57 +08:00
|
|
|
|
<td>用于推理的设备。支持指定具体卡号:
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<ul>
|
|
|
|
|
<li><b>CPU</b>:如 <code>cpu</code> 表示使用 CPU 进行推理;</li>
|
|
|
|
|
<li><b>GPU</b>:如 <code>gpu:0</code> 表示使用第 1 块 GPU 进行推理;</li>
|
|
|
|
|
<li><b>NPU</b>:如 <code>npu:0</code> 表示使用第 1 块 NPU 进行推理;</li>
|
|
|
|
|
<li><b>XPU</b>:如 <code>xpu:0</code> 表示使用第 1 块 XPU 进行推理;</li>
|
|
|
|
|
<li><b>MLU</b>:如 <code>mlu:0</code> 表示使用第 1 块 MLU 进行推理;</li>
|
|
|
|
|
<li><b>DCU</b>:如 <code>dcu:0</code> 表示使用第 1 块 DCU 进行推理;</li>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<li><b>None</b>:如果设置为<code>None</code>,将默认使用产线初始化的该参数值,初始化时,会优先使用本地的 GPU 0号设备,如果没有,则使用 CPU 设备。</li>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</ul>
|
|
|
|
|
</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>str|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>enable_hpi</code></td>
|
|
|
|
|
<td>是否启用高性能推理。</td>
|
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td><code>False</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_tensorrt</code></td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td>是否启用 Paddle Inference 的 TensorRT 子图引擎。如果模型不支持通过 TensorRT 加速,即使设置了此标志,也不会使用加速。<br/>
|
|
|
|
|
对于 CUDA 11.8 版本的飞桨,兼容的 TensorRT 版本为 8.x(x>=6),建议安装 TensorRT 8.6.1.6。<br/>
|
2025-06-09 14:59:41 +08:00
|
|
|
|
对于 CUDA 12.6 版本的飞桨,兼容的 TensorRT 版本为 10.x(x>=5),建议安装 TensorRT 10.5.0.18。
|
|
|
|
|
</td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td><code>False</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>precision</code></td>
|
|
|
|
|
<td>计算精度,如 fp32、fp16。</td>
|
|
|
|
|
<td><code>str</code></td>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<td><code>"fp32"</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>enable_mkldnn</code></td>
|
2025-06-09 10:53:44 +08:00
|
|
|
|
<td>是否启用 MKL-DNN 加速推理。如果 MKL-DNN 不可用或模型不支持通过 MKL-DNN 加速,即使设置了此标志,也不会使用加速。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</td>
|
|
|
|
|
<td><code>bool</code></td>
|
2025-06-01 18:27:52 +08:00
|
|
|
|
<td><code>True</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-06-12 21:00:47 +08:00
|
|
|
|
<td><code>mkldnn_cache_capacity</code></td>
|
|
|
|
|
<td>
|
|
|
|
|
MKL-DNN 缓存容量。
|
|
|
|
|
</td>
|
|
|
|
|
<td><code>int</code></td>
|
|
|
|
|
<td><code>10</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>cpu_threads</code></td>
|
|
|
|
|
<td>在 CPU 上进行推理时使用的线程数。</td>
|
|
|
|
|
<td><code>int</code></td>
|
|
|
|
|
<td><code>8</code></td>
|
|
|
|
|
</tr>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<tr>
|
|
|
|
|
<td><code>paddlex_config</code></td>
|
|
|
|
|
<td>PaddleX产线配置文件路径。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>str|None</code></td>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
|
|
|
|
|
(2)调用 doc_preprocessor 产线对象的 `predict()` 方法进行推理预测,该方法会返回一个结果列表。
|
|
|
|
|
|
|
|
|
|
另外,产线还提供了 `predict_iter()` 方法。两者在参数接受和结果返回方面是完全一致的,区别在于 `predict_iter()` 返回的是一个 `generator`,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。
|
|
|
|
|
|
|
|
|
|
以下是 `predict()` 方法的参数及其说明:
|
|
|
|
|
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>参数</th>
|
|
|
|
|
<th>参数说明</th>
|
|
|
|
|
<th>参数类型</th>
|
|
|
|
|
<th>默认值</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>input</code></td>
|
|
|
|
|
<td>待预测数据,支持多种输入类型,必填。
|
|
|
|
|
<ul>
|
2025-05-28 10:24:37 +08:00
|
|
|
|
<li><b>Python Var</b>:如 <code>numpy.ndarray</code> 表示的图像数据;</li>
|
2025-06-05 17:43:57 +08:00
|
|
|
|
<li><b>str</b>:如图像文件或者PDF文件的本地路径:<code>/root/data/img.jpg</code>;<b>如URL链接</b>,如图像文件或PDF文件的网络URL:<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/demo_image/doc_test_rotated.jpg">示例</a>;<b>如本地目录</b>,该目录下需包含待预测图像,如本地路径:<code>/root/data/</code>(当前不支持目录中包含PDF文件的预测,PDF文件需要指定到具体文件路径);</li>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<li><b>list</b>:列表元素需为上述类型数据,如<code>[numpy.ndarray, numpy.ndarray]</code>,<code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>,<code>["/root/data1", "/root/data2"]</code>。</li>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</ul>
|
|
|
|
|
</td>
|
|
|
|
|
<td><code>Python Var|str|list</code></td>
|
2025-05-20 15:17:30 +08:00
|
|
|
|
<td></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_doc_orientation_classify</code></td>
|
|
|
|
|
<td>是否在推理时使用文档方向分类模块。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>bool|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>use_doc_unwarping</code></td>
|
|
|
|
|
<td>是否在推理时使用文本图像矫正模块。</td>
|
2025-06-26 20:32:46 +08:00
|
|
|
|
<td><code>bool|None</code></td>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
<td><code>None</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
|
|
</table>
|
|
|
|
|
|
|
|
|
|
(3)对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为`json`文件的操作:
|
|
|
|
|
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>方法</th>
|
|
|
|
|
<th>方法说明</th>
|
|
|
|
|
<th>参数</th>
|
|
|
|
|
<th>参数类型</th>
|
|
|
|
|
<th>参数说明</th>
|
|
|
|
|
<th>默认值</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<td rowspan="3"><code>print()</code></td>
|
|
|
|
|
<td rowspan="3">打印结果到终端</td>
|
|
|
|
|
<td><code>format_json</code></td>
|
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td>是否对输出内容进行使用 <code>JSON</code> 缩进格式化</td>
|
|
|
|
|
<td><code>True</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>indent</code></td>
|
|
|
|
|
<td><code>int</code></td>
|
|
|
|
|
<td>指定缩进级别,以美化输出的 <code>JSON</code> 数据,使其更具可读性,仅当 <code>format_json</code> 为 <code>True</code> 时有效</td>
|
|
|
|
|
<td>4</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>ensure_ascii</code></td>
|
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td>控制是否将非 <code>ASCII</code> 字符转义为 <code>Unicode</code>。设置为 <code>True</code> 时,所有非 <code>ASCII</code> 字符将被转义;<code>False</code> 则保留原始字符,仅当<code>format_json</code>为<code>True</code>时有效</td>
|
|
|
|
|
<td><code>False</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td rowspan="3"><code>save_to_json()</code></td>
|
|
|
|
|
<td rowspan="3">将结果保存为json格式的文件</td>
|
|
|
|
|
<td><code>save_path</code></td>
|
|
|
|
|
<td><code>str</code></td>
|
|
|
|
|
<td>保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致</td>
|
|
|
|
|
<td>无</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>indent</code></td>
|
|
|
|
|
<td><code>int</code></td>
|
|
|
|
|
<td>指定缩进级别,以美化输出的 <code>JSON</code> 数据,使其更具可读性,仅当 <code>format_json</code> 为 <code>True</code> 时有效</td>
|
|
|
|
|
<td>4</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>ensure_ascii</code></td>
|
|
|
|
|
<td><code>bool</code></td>
|
|
|
|
|
<td>控制是否将非 <code>ASCII</code> 字符转义为 <code>Unicode</code>。设置为 <code>True</code> 时,所有非 <code>ASCII</code> 字符将被转义;<code>False</code> 则保留原始字符,仅当<code>format_json</code>为<code>True</code>时有效</td>
|
|
|
|
|
<td><code>False</code></td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>save_to_img()</code></td>
|
|
|
|
|
<td>将结果保存为图像格式的文件</td>
|
|
|
|
|
<td><code>save_path</code></td>
|
|
|
|
|
<td><code>str</code></td>
|
|
|
|
|
<td>保存的文件路径,支持目录或文件路径</td>
|
|
|
|
|
<td>无</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</table>
|
|
|
|
|
|
|
|
|
|
- 调用`print()` 方法会将结果打印到终端,打印到终端的内容解释如下:
|
|
|
|
|
|
|
|
|
|
- `input_path`: `(str)` 待预测图像的输入路径
|
|
|
|
|
|
|
|
|
|
- `page_index`: `(Union[int, None])` 如果输入是PDF文件,则表示当前是PDF的第几页,否则为 `None`
|
|
|
|
|
|
|
|
|
|
- `model_settings`: `(Dict[str, bool])` 配置产线所需的模型参数
|
|
|
|
|
|
|
|
|
|
- `use_doc_orientation_classify`: `(bool)` 控制是否启用文档方向分类模块
|
|
|
|
|
- `use_doc_unwarping`: `(bool)` 控制是否启用文本图像矫正模块
|
|
|
|
|
|
|
|
|
|
- `angle`: `(int)` 文档方向分类的预测结果。启用时取值为[0,90,180,270];未启用时为-1
|
|
|
|
|
|
|
|
|
|
- 调用`save_to_json()` 方法会将上述内容保存到指定的`save_path`中,如果指定为目录,则保存的路径为`save_path/{your_img_basename}.json`,如果指定为文件,则直接保存到该文件中。由于json文件不支持保存numpy数组,因此会将其中的`numpy.array`类型转换为列表形式。
|
|
|
|
|
- 调用`save_to_img()` 方法会将可视化结果保存到指定的`save_path`中,如果指定为目录,则保存的路径为`save_path/{your_img_basename}_doc_preprocessor_res_img.{your_img_extension}`,如果指定为文件,则直接保存到该文件中。(产线通常包含较多结果图片,不建议直接指定为具体的文件路径,否则多张图会被覆盖,仅保留最后一张图)
|
|
|
|
|
|
|
|
|
|
* 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
|
|
|
|
|
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>属性</th>
|
|
|
|
|
<th>属性说明</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<td rowspan="1"><code>json</code></td>
|
|
|
|
|
<td rowspan="1">获取预测的 <code>json</code> 格式的结果</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td rowspan="2"><code>img</code></td>
|
|
|
|
|
<td rowspan="2">获取格式为 <code>dict</code> 的可视化图像</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</table>
|
|
|
|
|
|
|
|
|
|
- `json` 属性获取的预测结果为dict类型的数据,相关内容与调用 `save_to_json()` 方法保存的内容一致。
|
2025-06-05 17:43:57 +08:00
|
|
|
|
- `img` 属性返回的预测结果是一个dict类型的数据。其中,键为 `preprocessed_img`,对应的值是 `Image.Image` 对象:用于显示 doc_preprocessor 结果的可视化图像。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
|
|
|
|
|
## 3. 开发集成/部署
|
|
|
|
|
|
|
|
|
|
如果产线可以达到您对产线推理速度和精度的要求,您可以直接进行开发集成/部署。
|
|
|
|
|
|
|
|
|
|
若您需要将产线直接应用在您的Python项目中,可以参考 [2.2 Python脚本方式](#22-python脚本方式集成)中的示例代码。
|
|
|
|
|
|
|
|
|
|
此外,PaddleOCR 也提供了其他两种部署方式,详细说明如下:
|
|
|
|
|
|
2025-05-20 15:13:40 +08:00
|
|
|
|
🚀 高性能推理:在实际生产环境中,许多应用对部署策略的性能指标(尤其是响应速度)有着较严苛的标准,以确保系统的高效运行与用户体验的流畅性。为此,PaddleOCR 提供高性能推理功能,旨在对模型推理及前后处理进行深度性能优化,实现端到端流程的显著提速,详细的高性能推理流程请参考[高性能推理](../deployment/high_performance_inference.md)。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
|
2025-05-20 15:13:40 +08:00
|
|
|
|
☁️ 服务化部署:服务化部署是实际生产环境中常见的一种部署形式。通过将推理功能封装为服务,客户端可以通过网络请求来访问这些服务,以获取推理结果。详细的产线服务化部署流程请参考[服务化部署](../deployment/serving.md)。
|
2025-05-18 21:09:53 +08:00
|
|
|
|
|
|
|
|
|
以下是基础服务化部署的API参考与多语言服务调用示例:
|
|
|
|
|
|
|
|
|
|
<details><summary>API参考</summary>
|
|
|
|
|
<p>对于服务提供的主要操作:</p>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>HTTP请求方法为POST。</li>
|
|
|
|
|
<li>请求体和响应体均为JSON数据(JSON对象)。</li>
|
|
|
|
|
<li>当请求处理成功时,响应状态码为<code>200</code>,响应体的属性如下:</li>
|
|
|
|
|
</ul>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>名称</th>
|
|
|
|
|
<th>类型</th>
|
|
|
|
|
<th>含义</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>logId</code></td>
|
|
|
|
|
<td><code>string</code></td>
|
|
|
|
|
<td>请求的UUID。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>errorCode</code></td>
|
|
|
|
|
<td><code>integer</code></td>
|
|
|
|
|
<td>错误码。固定为<code>0</code>。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>errorMsg</code></td>
|
|
|
|
|
<td><code>string</code></td>
|
|
|
|
|
<td>错误说明。固定为<code>"Success"</code>。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>result</code></td>
|
|
|
|
|
<td><code>object</code></td>
|
|
|
|
|
<td>操作结果。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>当请求处理未成功时,响应体的属性如下:</li>
|
|
|
|
|
</ul>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>名称</th>
|
|
|
|
|
<th>类型</th>
|
|
|
|
|
<th>含义</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>logId</code></td>
|
|
|
|
|
<td><code>string</code></td>
|
|
|
|
|
<td>请求的UUID。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>errorCode</code></td>
|
|
|
|
|
<td><code>integer</code></td>
|
|
|
|
|
<td>错误码。与响应状态码相同。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>errorMsg</code></td>
|
|
|
|
|
<td><code>string</code></td>
|
|
|
|
|
<td>错误说明。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
<p>服务提供的主要操作如下:</p>
|
|
|
|
|
<ul>
|
|
|
|
|
<li><b><code>infer</code></b></li>
|
|
|
|
|
</ul>
|
|
|
|
|
<p>获取图像文档图像预处理结果。</p>
|
|
|
|
|
<p><code>POST /document-preprocessing</code></p>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>请求体的属性如下:</li>
|
|
|
|
|
</ul>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>名称</th>
|
|
|
|
|
<th>类型</th>
|
|
|
|
|
<th>含义</th>
|
|
|
|
|
<th>是否必填</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>file</code></td>
|
|
|
|
|
<td><code>string</code></td>
|
|
|
|
|
<td>服务器可访问的图像文件或PDF文件的URL,或上述类型文件内容的Base64编码结果。默认对于超过10页的PDF文件,只有前10页的内容会被处理。<br /> 要解除页数限制,请在产线配置文件中添加以下配置:
|
|
|
|
|
<pre><code>Serving:
|
|
|
|
|
extra:
|
|
|
|
|
max_num_input_imgs: null
|
|
|
|
|
</code></pre>
|
|
|
|
|
</td>
|
|
|
|
|
<td>是</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>fileType</code></td>
|
|
|
|
|
<td><code>integer</code> | <code>null</code></td>
|
|
|
|
|
<td>文件类型。<code>0</code>表示PDF文件,<code>1</code>表示图像文件。若请求体无此属性,则将根据URL推断文件类型。</td>
|
|
|
|
|
<td>否</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-06-28 23:13:32 +08:00
|
|
|
|
<td><code>useDocOrientationClassify</code></td>
|
|
|
|
|
<td><code>boolean</code> | <code>null</code></td>
|
|
|
|
|
<td>请参阅产线对象中 <code>predict</code> 方法的 <code>use_doc_orientation_classify</code> 参数相关说明。</td>
|
|
|
|
|
<td>否</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>useDocUnwarping</code></td>
|
|
|
|
|
<td><code>boolean</code> | <code>null</code></td>
|
|
|
|
|
<td>请参阅产线对象中 <code>predict</code> 方法的 <code>use_doc_unwarping</code> 参数相关说明。</td>
|
|
|
|
|
<td>否</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
2025-06-25 14:10:03 +08:00
|
|
|
|
<td><code>visualize</code></td>
|
|
|
|
|
<td><code>boolean</code> | <code>null</code></td>
|
|
|
|
|
<td>是否返回可视化结果图以及处理过程中的中间图像等。
|
|
|
|
|
<ul style="margin: 0 0 0 1em; padding-left: 0em;">
|
|
|
|
|
<li>传入 <code>true</code>:返回图像。</li>
|
|
|
|
|
<li>传入 <code>false</code>:不返回图像。</li>
|
|
|
|
|
<li>若请求体中未提供该参数或传入 <code>null</code>:遵循产线配置文件<code>Serving.visualize</code> 的设置。</li>
|
|
|
|
|
</ul>
|
|
|
|
|
<br/>例如,在产线配置文件中添加如下字段:<br/>
|
|
|
|
|
<pre><code>Serving:
|
|
|
|
|
visualize: False
|
|
|
|
|
</code></pre>
|
|
|
|
|
将默认不返回图像,通过请求体中的<code>visualize</code>参数可以覆盖默认行为。如果请求体和配置文件中均未设置(或请求体传入<code>null</code>、配置文件中未设置),则默认返回图像。
|
|
|
|
|
</td>
|
|
|
|
|
<td>否</td>
|
|
|
|
|
</tr>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>请求处理成功时,响应体的<code>result</code>具有如下属性:</li>
|
|
|
|
|
</ul>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>名称</th>
|
|
|
|
|
<th>类型</th>
|
|
|
|
|
<th>含义</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>docPreprocessingResults</code></td>
|
|
|
|
|
<td><code>object</code></td>
|
|
|
|
|
<td>文档图像预处理结果。数组长度为1(对于图像输入)或实际处理的文档页数(对于PDF输入)。对于PDF输入,数组中的每个元素依次表示PDF文件中实际处理的每一页的结果。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>dataInfo</code></td>
|
|
|
|
|
<td><code>object</code></td>
|
|
|
|
|
<td>输入数据信息。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
<p><code>docPreprocessingResults</code>中的每个元素为一个<code>object</code>,具有如下属性:</p>
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>名称</th>
|
|
|
|
|
<th>类型</th>
|
|
|
|
|
<th>含义</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>outputImage</code></td>
|
|
|
|
|
<td><code>string</code></td>
|
|
|
|
|
<td>经过预处理的图像。图像为PNG格式,使用Base64编码。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>prunedResult</code></td>
|
|
|
|
|
<td><code>object</code></td>
|
|
|
|
|
<td>产线对象的 <code>predict</code> 方法生成结果的 JSON 表示中 <code>res</code> 字段的简化版本,其中去除了 <code>input_path</code> 和 <code>page_index</code> 字段。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>docPreprocessingImage</code></td>
|
|
|
|
|
<td><code>string</code> | <code>null</code></td>
|
|
|
|
|
<td>可视化结果图。图像为JPEG格式,使用Base64编码。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td><code>inputImage</code></td>
|
|
|
|
|
<td><code>string</code> | <code>null</code></td>
|
|
|
|
|
<td>输入图像。图像为JPEG格式,使用Base64编码。</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|
|
|
|
|
</details>
|
|
|
|
|
<details><summary>多语言调用服务示例</summary>
|
|
|
|
|
<details>
|
|
|
|
|
<summary>Python</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-python">import base64
|
|
|
|
|
import requests
|
|
|
|
|
|
|
|
|
|
API_URL = "http://localhost:8080/document-preprocessing"
|
|
|
|
|
file_path = "./demo.jpg"
|
|
|
|
|
|
|
|
|
|
with open(file_path, "rb") as file:
|
|
|
|
|
file_bytes = file.read()
|
|
|
|
|
file_data = base64.b64encode(file_bytes).decode("ascii")
|
|
|
|
|
|
|
|
|
|
payload = {"file": file_data, "fileType": 1}
|
|
|
|
|
|
|
|
|
|
response = requests.post(API_URL, json=payload)
|
|
|
|
|
|
|
|
|
|
assert response.status_code == 200
|
|
|
|
|
result = response.json()["result"]
|
|
|
|
|
for i, res in enumerate(result["docPreprocessingResults"]):
|
|
|
|
|
print(res["prunedResult"])
|
|
|
|
|
output_img_path = f"out_{i}.png"
|
|
|
|
|
with open(output_img_path, "wb") as f:
|
|
|
|
|
f.write(base64.b64decode(res["outputImage"]))
|
|
|
|
|
print(f"Output image saved at {output_img_path}")
|
|
|
|
|
</code></pre></details>
|
2025-06-16 14:56:00 +08:00
|
|
|
|
|
|
|
|
|
<details><summary>C++</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-cpp">#include <iostream>
|
|
|
|
|
#include <fstream>
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include <string>
|
|
|
|
|
#include "cpp-httplib/httplib.h" // https://github.com/Huiyicc/cpp-httplib
|
|
|
|
|
#include "nlohmann/json.hpp" // https://github.com/nlohmann/json
|
|
|
|
|
#include "base64.hpp" // https://github.com/tobiaslocker/base64
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
|
|
|
|
|
httplib::Client client("localhost", 8080);
|
|
|
|
|
const std::string filePath = "./demo.jpg";
|
|
|
|
|
std::ifstream file(filePath, std::ios::binary | std::ios::ate);
|
|
|
|
|
if (!file) {
|
|
|
|
|
std::cerr << "Error opening file: " << filePath << std::endl;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::streamsize size = file.tellg();
|
|
|
|
|
file.seekg(0, std::ios::beg);
|
|
|
|
|
std::vector<char> buffer(size);
|
|
|
|
|
if (!file.read(buffer.data(), size)) {
|
|
|
|
|
std::cerr << "Error reading file." << std::endl;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::string bufferStr(buffer.data(), static_cast<size_t>(size));
|
|
|
|
|
std::string encodedFile = base64::to_base64(bufferStr);
|
|
|
|
|
|
|
|
|
|
nlohmann::json jsonObj;
|
|
|
|
|
jsonObj["file"] = encodedFile;
|
|
|
|
|
jsonObj["fileType"] = 1;
|
|
|
|
|
|
|
|
|
|
auto response = client.Post("/document-preprocessing", jsonObj.dump(), "application/json");
|
|
|
|
|
|
|
|
|
|
if (response && response->status == 200) {
|
|
|
|
|
nlohmann::json jsonResponse = nlohmann::json::parse(response->body);
|
|
|
|
|
auto result = jsonResponse["result"];
|
|
|
|
|
|
|
|
|
|
if (!result.is_object() || !result["docPreprocessingResults"].is_array()) {
|
|
|
|
|
std::cerr << "Unexpected response format." << std::endl;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < result["docPreprocessingResults"].size(); ++i) {
|
|
|
|
|
auto res = result["docPreprocessingResults"][i];
|
|
|
|
|
|
|
|
|
|
if (res.contains("prunedResult")) {
|
|
|
|
|
std::cout << "Preprocessed result: " << res["prunedResult"].dump() << std::endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (res.contains("outputImage")) {
|
|
|
|
|
std::string outputImgPath = "out_" + std::to_string(i) + ".png";
|
|
|
|
|
std::string decodedImage = base64::from_base64(res["outputImage"].get<std::string>());
|
|
|
|
|
|
|
|
|
|
std::ofstream outFile(outputImgPath, std::ios::binary);
|
|
|
|
|
if (outFile.is_open()) {
|
|
|
|
|
outFile.write(decodedImage.c_str(), decodedImage.size());
|
|
|
|
|
outFile.close();
|
|
|
|
|
std::cout << "Saved image: " << outputImgPath << std::endl;
|
|
|
|
|
} else {
|
|
|
|
|
std::cerr << "Failed to write image: " << outputImgPath << std::endl;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
std::cerr << "Request failed." << std::endl;
|
|
|
|
|
if (response) {
|
|
|
|
|
std::cerr << "HTTP status: " << response->status << std::endl;
|
|
|
|
|
std::cerr << "Response body: " << response->body << std::endl;
|
|
|
|
|
}
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
</code></pre></details>
|
|
|
|
|
|
|
|
|
|
<details><summary>Java</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-java">import okhttp3.*;
|
|
|
|
|
import com.fasterxml.jackson.databind.ObjectMapper;
|
|
|
|
|
import com.fasterxml.jackson.databind.JsonNode;
|
|
|
|
|
import com.fasterxml.jackson.databind.node.ObjectNode;
|
|
|
|
|
|
|
|
|
|
import java.io.File;
|
|
|
|
|
import java.io.FileOutputStream;
|
|
|
|
|
import java.io.IOException;
|
|
|
|
|
import java.util.Base64;
|
|
|
|
|
|
|
|
|
|
public class Main {
|
|
|
|
|
public static void main(String[] args) throws IOException {
|
|
|
|
|
String API_URL = "http://localhost:8080/document-preprocessing";
|
|
|
|
|
String imagePath = "./demo.jpg";
|
|
|
|
|
|
|
|
|
|
File file = new File(imagePath);
|
|
|
|
|
byte[] fileContent = java.nio.file.Files.readAllBytes(file.toPath());
|
|
|
|
|
String base64Image = Base64.getEncoder().encodeToString(fileContent);
|
|
|
|
|
|
|
|
|
|
ObjectMapper objectMapper = new ObjectMapper();
|
|
|
|
|
ObjectNode payload = objectMapper.createObjectNode();
|
|
|
|
|
payload.put("file", base64Image);
|
|
|
|
|
payload.put("fileType", 1);
|
|
|
|
|
|
|
|
|
|
OkHttpClient client = new OkHttpClient();
|
|
|
|
|
MediaType JSON = MediaType.get("application/json; charset=utf-8");
|
|
|
|
|
RequestBody body = RequestBody.create(JSON, payload.toString());
|
|
|
|
|
|
|
|
|
|
Request request = new Request.Builder()
|
|
|
|
|
.url(API_URL)
|
|
|
|
|
.post(body)
|
|
|
|
|
.build();
|
|
|
|
|
|
|
|
|
|
try (Response response = client.newCall(request).execute()) {
|
|
|
|
|
if (response.isSuccessful()) {
|
|
|
|
|
String responseBody = response.body().string();
|
|
|
|
|
JsonNode root = objectMapper.readTree(responseBody);
|
|
|
|
|
JsonNode result = root.get("result");
|
|
|
|
|
|
|
|
|
|
JsonNode docPreprocessingResults = result.get("docPreprocessingResults");
|
|
|
|
|
for (int i = 0; i < docPreprocessingResults.size(); i++) {
|
|
|
|
|
JsonNode item = docPreprocessingResults.get(i);
|
|
|
|
|
int finalI = i;
|
|
|
|
|
|
|
|
|
|
JsonNode prunedResult = item.get("prunedResult");
|
|
|
|
|
System.out.println("Pruned Result [" + i + "]: " + prunedResult.toString());
|
|
|
|
|
|
|
|
|
|
String outputImgBase64 = item.get("outputImage").asText();
|
|
|
|
|
byte[] outputImgBytes = Base64.getDecoder().decode(outputImgBase64);
|
|
|
|
|
String outputImgPath = "out_" + finalI + ".png";
|
|
|
|
|
try (FileOutputStream fos = new FileOutputStream(outputImgPath)) {
|
|
|
|
|
fos.write(outputImgBytes);
|
|
|
|
|
System.out.println("Saved output image: " + outputImgPath);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
JsonNode inputImageNode = item.get("inputImage");
|
|
|
|
|
if (inputImageNode != null && !inputImageNode.isNull()) {
|
|
|
|
|
String inputImageBase64 = inputImageNode.asText();
|
|
|
|
|
byte[] inputImageBytes = Base64.getDecoder().decode(inputImageBase64);
|
|
|
|
|
String inputImgPath = "inputImage_" + i + ".jpg";
|
|
|
|
|
try (FileOutputStream fos = new FileOutputStream(inputImgPath)) {
|
|
|
|
|
fos.write(inputImageBytes);
|
|
|
|
|
System.out.println("Saved input image to: " + inputImgPath);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
System.err.println("Request failed with HTTP code: " + response.code());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
</code></pre></details>
|
|
|
|
|
|
|
|
|
|
<details><summary>Go</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-go">package main
|
|
|
|
|
|
|
|
|
|
import (
|
|
|
|
|
"bytes"
|
|
|
|
|
"encoding/base64"
|
|
|
|
|
"encoding/json"
|
|
|
|
|
"fmt"
|
|
|
|
|
"io/ioutil"
|
|
|
|
|
"net/http"
|
|
|
|
|
"os"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
func main() {
|
|
|
|
|
API_URL := "http://localhost:8080/document-preprocessing"
|
|
|
|
|
filePath := "./demo.jpg"
|
|
|
|
|
|
|
|
|
|
fileBytes, err := ioutil.ReadFile(filePath)
|
|
|
|
|
if err != nil {
|
|
|
|
|
fmt.Printf("Error reading file: %v\n", err)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
fileData := base64.StdEncoding.EncodeToString(fileBytes)
|
|
|
|
|
|
|
|
|
|
payload := map[string]interface{}{
|
|
|
|
|
"file": fileData,
|
|
|
|
|
"fileType": 1,
|
|
|
|
|
}
|
|
|
|
|
payloadBytes, err := json.Marshal(payload)
|
|
|
|
|
if err != nil {
|
|
|
|
|
fmt.Printf("Error marshaling payload: %v\n", err)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
client := &http.Client{}
|
|
|
|
|
req, err := http.NewRequest("POST", API_URL, bytes.NewBuffer(payloadBytes))
|
|
|
|
|
if err != nil {
|
|
|
|
|
fmt.Printf("Error creating request: %v\n", err)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
|
|
|
|
|
|
res, err := client.Do(req)
|
|
|
|
|
if err != nil {
|
|
|
|
|
fmt.Printf("Error sending request: %v\n", err)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
defer res.Body.Close()
|
|
|
|
|
|
|
|
|
|
if res.StatusCode != http.StatusOK {
|
|
|
|
|
fmt.Printf("Unexpected status code: %d\n", res.StatusCode)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
body, err := ioutil.ReadAll(res.Body)
|
|
|
|
|
if err != nil {
|
|
|
|
|
fmt.Printf("Error reading response body: %v\n", err)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type DocPreprocessingResult struct {
|
|
|
|
|
PrunedResult map[string]interface{} `json:"prunedResult"`
|
|
|
|
|
OutputImage string `json:"outputImage"`
|
|
|
|
|
DocPreprocessingImage *string `json:"docPreprocessingImage"`
|
|
|
|
|
InputImage *string `json:"inputImage"`
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type Response struct {
|
|
|
|
|
Result struct {
|
|
|
|
|
DocPreprocessingResults []DocPreprocessingResult `json:"docPreprocessingResults"`
|
|
|
|
|
DataInfo interface{} `json:"dataInfo"`
|
|
|
|
|
} `json:"result"`
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
var respData Response
|
|
|
|
|
if err := json.Unmarshal(body, &respData); err != nil {
|
|
|
|
|
fmt.Printf("Error unmarshaling response: %v\n", err)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for i, res := range respData.Result.DocPreprocessingResults {
|
|
|
|
|
fmt.Printf("Result %d - prunedResult: %+v\n", i, res.PrunedResult)
|
|
|
|
|
|
|
|
|
|
imgBytes, err := base64.StdEncoding.DecodeString(res.OutputImage)
|
|
|
|
|
if err != nil {
|
|
|
|
|
fmt.Printf("Error decoding outputImage at index %d: %v\n", i, err)
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
filename := fmt.Sprintf("out_%d.png", i)
|
|
|
|
|
if err := os.WriteFile(filename, imgBytes, 0644); err != nil {
|
|
|
|
|
fmt.Printf("Error saving image %s: %v\n", filename, err)
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
fmt.Printf("Saved output image to %s\n", filename)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
</code></pre></details>
|
|
|
|
|
|
|
|
|
|
<details><summary>C#</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-csharp">using System;
|
|
|
|
|
using System.IO;
|
|
|
|
|
using System.Net.Http;
|
|
|
|
|
using System.Text;
|
|
|
|
|
using System.Threading.Tasks;
|
|
|
|
|
using Newtonsoft.Json.Linq;
|
|
|
|
|
|
|
|
|
|
class Program
|
|
|
|
|
{
|
|
|
|
|
static readonly string API_URL = "http://localhost:8080/document-preprocessing";
|
|
|
|
|
static readonly string inputFilePath = "./demo.jpg";
|
|
|
|
|
|
|
|
|
|
static async Task Main(string[] args)
|
|
|
|
|
{
|
|
|
|
|
var httpClient = new HttpClient();
|
|
|
|
|
|
|
|
|
|
byte[] fileBytes = File.ReadAllBytes(inputFilePath);
|
|
|
|
|
string fileData = Convert.ToBase64String(fileBytes);
|
|
|
|
|
|
|
|
|
|
var payload = new JObject
|
|
|
|
|
{
|
|
|
|
|
{ "file", fileData },
|
|
|
|
|
{ "fileType", 1 }
|
|
|
|
|
};
|
|
|
|
|
var content = new StringContent(payload.ToString(), Encoding.UTF8, "application/json");
|
|
|
|
|
|
|
|
|
|
HttpResponseMessage response = await httpClient.PostAsync(API_URL, content);
|
|
|
|
|
response.EnsureSuccessStatusCode();
|
|
|
|
|
|
|
|
|
|
string responseBody = await response.Content.ReadAsStringAsync();
|
|
|
|
|
JObject jsonResponse = JObject.Parse(responseBody);
|
|
|
|
|
|
|
|
|
|
JArray docPreResults = (JArray)jsonResponse["result"]["docPreprocessingResults"];
|
|
|
|
|
for (int i = 0; i < docPreResults.Count; i++)
|
|
|
|
|
{
|
|
|
|
|
var res = docPreResults[i];
|
|
|
|
|
Console.WriteLine($"[{i}] prunedResult:\n{res["prunedResult"]}");
|
|
|
|
|
|
|
|
|
|
string base64Image = res["outputImage"]?.ToString();
|
|
|
|
|
if (!string.IsNullOrEmpty(base64Image))
|
|
|
|
|
{
|
|
|
|
|
string outputPath = $"out_{i}.png";
|
|
|
|
|
byte[] imageBytes = Convert.FromBase64String(base64Image);
|
|
|
|
|
File.WriteAllBytes(outputPath, imageBytes);
|
|
|
|
|
Console.WriteLine($"Output image saved at {outputPath}");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
Console.WriteLine($"outputImage at index {i} is null.");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
</code></pre></details>
|
|
|
|
|
|
|
|
|
|
<details><summary>Node.js</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-js">const axios = require('axios');
|
|
|
|
|
const fs = require('fs');
|
|
|
|
|
const path = require('path');
|
|
|
|
|
|
|
|
|
|
const API_URL = 'http://localhost:8080/document-preprocessing';
|
|
|
|
|
const imagePath = './demo.jpg';
|
|
|
|
|
|
|
|
|
|
function encodeImageToBase64(filePath) {
|
|
|
|
|
const bitmap = fs.readFileSync(filePath);
|
|
|
|
|
return Buffer.from(bitmap).toString('base64');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const payload = {
|
|
|
|
|
file: encodeImageToBase64(imagePath),
|
|
|
|
|
fileType: 1
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
axios.post(API_URL, payload, {
|
|
|
|
|
headers: {
|
|
|
|
|
'Content-Type': 'application/json'
|
|
|
|
|
},
|
|
|
|
|
maxBodyLength: Infinity
|
|
|
|
|
})
|
|
|
|
|
.then((response) => {
|
|
|
|
|
const results = response.data.result.docPreprocessingResults;
|
|
|
|
|
|
|
|
|
|
results.forEach((res, index) => {
|
|
|
|
|
console.log(`\n[${index}] prunedResult:`);
|
|
|
|
|
console.log(res.prunedResult);
|
|
|
|
|
|
|
|
|
|
const base64Image = res.outputImage;
|
|
|
|
|
if (base64Image) {
|
|
|
|
|
const outputImagePath = `out_${index}.png`;
|
|
|
|
|
const imageBuffer = Buffer.from(base64Image, 'base64');
|
|
|
|
|
fs.writeFileSync(outputImagePath, imageBuffer);
|
|
|
|
|
console.log(`Output image saved at ${outputImagePath}`);
|
|
|
|
|
} else {
|
|
|
|
|
console.log(`outputImage at index ${index} is null.`);
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
})
|
|
|
|
|
.catch((error) => {
|
|
|
|
|
console.error('API error:', error.message);
|
|
|
|
|
});
|
|
|
|
|
</code></pre></details>
|
|
|
|
|
|
|
|
|
|
<details><summary>PHP</summary>
|
|
|
|
|
|
|
|
|
|
<pre><code class="language-php"><?php
|
|
|
|
|
|
|
|
|
|
$API_URL = "http://localhost:8080/document-preprocessing";
|
|
|
|
|
$image_path = "./demo.jpg";
|
|
|
|
|
$output_image_path = "./out_0.png";
|
|
|
|
|
|
|
|
|
|
$image_data = base64_encode(file_get_contents($image_path));
|
|
|
|
|
$payload = array("file" => $image_data, "fileType" => 1);
|
|
|
|
|
|
|
|
|
|
$ch = curl_init($API_URL);
|
|
|
|
|
curl_setopt($ch, CURLOPT_POST, true);
|
|
|
|
|
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($payload));
|
|
|
|
|
curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
|
|
|
|
|
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
|
|
|
|
|
$response = curl_exec($ch);
|
|
|
|
|
curl_close($ch);
|
|
|
|
|
|
|
|
|
|
$result = json_decode($response, true)["result"]["docPreprocessingResults"];
|
|
|
|
|
|
|
|
|
|
foreach ($result as $i => $item) {
|
|
|
|
|
echo "[$i] prunedResult:\n";
|
|
|
|
|
print_r($item["prunedResult"]);
|
|
|
|
|
|
|
|
|
|
if (!empty($item["outputImage"])) {
|
|
|
|
|
$output_image_path = "out_" . $i . ".png";
|
|
|
|
|
file_put_contents($output_image_path, base64_decode($item["outputImage"]));
|
|
|
|
|
echo "Output image saved at $output_image_path\n";
|
|
|
|
|
} else {
|
|
|
|
|
echo "No outputImage found for item $i\n";
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
?>
|
|
|
|
|
</code></pre></details>
|
2025-05-18 21:09:53 +08:00
|
|
|
|
</details>
|
|
|
|
|
<br/>
|
|
|
|
|
|
|
|
|
|
## 4. 二次开发
|
|
|
|
|
|
|
|
|
|
如果文档图像预处理产线提供的默认模型权重在您的场景中,精度或速度不满意,您可以尝试利用<b>您自己拥有的特定领域或应用场景的数据</b>对现有模型进行进一步的<b>微调</b>,以提升文档图像预处理产线的在您的场景中的识别效果。
|
|
|
|
|
|
2025-05-20 17:11:58 +08:00
|
|
|
|
### 4.1 模型微调
|
2025-05-20 02:53:42 +08:00
|
|
|
|
|
|
|
|
|
由于文档图像预处理产线包含若干模块,模型产线的效果如果不及预期,可能来自于其中任何一个模块。您可以对识别效果差的图片进行分析,进而确定是哪个模块存在问题,并参考以下表格中对应的微调教程链接进行模型微调。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<table>
|
|
|
|
|
<thead>
|
|
|
|
|
<tr>
|
|
|
|
|
<th>情形</th>
|
|
|
|
|
<th>微调模块</th>
|
|
|
|
|
<th>微调参考链接</th>
|
|
|
|
|
</tr>
|
|
|
|
|
</thead>
|
|
|
|
|
<tbody>
|
|
|
|
|
<tr>
|
|
|
|
|
<td>整图旋转矫正不准</td>
|
|
|
|
|
<td>文档图像方向分类模块</td>
|
2025-05-20 15:56:36 +08:00
|
|
|
|
<td><a href="https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.html#_5">链接</a></td>
|
2025-05-20 02:53:42 +08:00
|
|
|
|
</tr>
|
|
|
|
|
<tr>
|
|
|
|
|
<td>图像扭曲矫正不准</td>
|
|
|
|
|
<td>文本图像矫正模块</td>
|
|
|
|
|
<td>暂不支持微调</td>
|
|
|
|
|
</tr>
|
|
|
|
|
</tbody>
|
|
|
|
|
</table>
|