mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-04 15:40:53 +00:00
108 lines
3.6 KiB
Markdown
108 lines
3.6 KiB
Markdown
![]() |
---
|
||
|
comments: true
|
||
|
---
|
||
|
|
||
|
# Text Gestalt
|
||
|
|
||
|
## 1. Introduction
|
||
|
|
||
|
Paper:
|
||
|
> [Text Gestalt: Stroke-Aware Scene Text Image Super-Resolution](https://arxiv.org/pdf/2112.08171.pdf)
|
||
|
> Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang
|
||
|
> AAAI, 2022
|
||
|
|
||
|
Referring to the [FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/text-gestalt) data download instructions, the effect of the super-score algorithm on the TextZoom test set is as follows:
|
||
|
|
||
|
|Model | Backbone|config|Acc|Download link|
|
||
|
|---|---|---|---|---|
|
||
|
|Text Gestalt|tsrn|19.28|0.6560| [configs/sr/sr_tsrn_transformer_strock.yml](../../configs/sr/sr_tsrn_transformer_strock.yml)|[train model](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar)|
|
||
|
|
||
|
## 2. Environment
|
||
|
|
||
|
Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code.
|
||
|
|
||
|
## 3. Model Training / Evaluation / Prediction
|
||
|
|
||
|
Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different models only requires **changing the configuration file**.
|
||
|
|
||
|
### Training
|
||
|
|
||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||
|
|
||
|
```bash linenums="1"
|
||
|
# Single GPU training (long training period, not recommended)
|
||
|
python3 tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml
|
||
|
|
||
|
# Multi GPU training, specify the gpu number through the --gpus parameter
|
||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml
|
||
|
```
|
||
|
|
||
|
### Evaluation
|
||
|
|
||
|
```bash linenums="1"
|
||
|
# GPU evaluation
|
||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||
|
```
|
||
|
|
||
|
### Prediction
|
||
|
|
||
|
```bash linenums="1"
|
||
|
# The configuration file used for prediction must match the training
|
||
|
|
||
|
python3 tools/infer_sr.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png
|
||
|
```
|
||
|
|
||
|

|
||
|
|
||
|
After executing the command, the super-resolution result of the above image is as follows:
|
||
|
|
||
|

|
||
|
|
||
|
## 4. Inference and Deployment
|
||
|
|
||
|
### 4.1 Python Inference
|
||
|
|
||
|
First, the model saved during the training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar) ), you can use the following command to convert:
|
||
|
|
||
|
```bash linenums="1"
|
||
|
python3 tools/export_model.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out
|
||
|
```
|
||
|
|
||
|
For Text-Gestalt super-resolution model inference, the following commands can be executed:
|
||
|
|
||
|
```bash linenums="1"
|
||
|
python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128
|
||
|
```
|
||
|
|
||
|
After executing the command, the super-resolution result of the above image is as follows:
|
||
|
|
||
|

|
||
|
|
||
|
### 4.2 C++ Inference
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
### 4.3 Serving
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
### 4.4 More
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
## 5. FAQ
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```bibtex
|
||
|
@inproceedings{chen2022text,
|
||
|
title={Text gestalt: Stroke-aware scene text image super-resolution},
|
||
|
author={Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang},
|
||
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
||
|
volume={36},
|
||
|
number={1},
|
||
|
pages={285--293},
|
||
|
year={2022}
|
||
|
}
|
||
|
```
|