mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
	
	
		
			529 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			529 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | ||
|  | # | ||
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
|  | # you may not use this file except in compliance with the License. | ||
|  | # You may obtain a copy of the License at | ||
|  | # | ||
|  | #    http://www.apache.org/licenses/LICENSE-2.0 | ||
|  | # | ||
|  | # Unless required by applicable law or agreed to in writing, software | ||
|  | # distributed under the License is distributed on an "AS IS" BASIS, | ||
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
|  | # See the License for the specific language governing permissions and | ||
|  | # limitations under the License. | ||
|  | """
 | ||
|  | This code is refer from:  | ||
|  | https://github.com/liyunsheng13/micronet/blob/main/backbone/micronet.py | ||
|  | https://github.com/liyunsheng13/micronet/blob/main/backbone/activation.py | ||
|  | """
 | ||
|  | 
 | ||
|  | from __future__ import absolute_import | ||
|  | from __future__ import division | ||
|  | from __future__ import print_function | ||
|  | 
 | ||
|  | import paddle | ||
|  | import paddle.nn as nn | ||
|  | 
 | ||
|  | from ppocr.modeling.backbones.det_mobilenet_v3 import make_divisible | ||
|  | 
 | ||
|  | M0_cfgs = [ | ||
|  |     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4, y1, y2, y3, r | ||
|  |     [2, 1, 8, 3, 2, 2, 0, 4, 8, 2, 2, 2, 0, 1, 1], | ||
|  |     [2, 1, 12, 3, 2, 2, 0, 8, 12, 4, 4, 2, 2, 1, 1], | ||
|  |     [2, 1, 16, 5, 2, 2, 0, 12, 16, 4, 4, 2, 2, 1, 1], | ||
|  |     [1, 1, 32, 5, 1, 4, 4, 4, 32, 4, 4, 2, 2, 1, 1], | ||
|  |     [2, 1, 64, 5, 1, 4, 8, 8, 64, 8, 8, 2, 2, 1, 1], | ||
|  |     [1, 1, 96, 3, 1, 4, 8, 8, 96, 8, 8, 2, 2, 1, 2], | ||
|  |     [1, 1, 384, 3, 1, 4, 12, 12, 0, 0, 0, 2, 2, 1, 2], | ||
|  | ] | ||
|  | M1_cfgs = [ | ||
|  |     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4 | ||
|  |     [2, 1, 8, 3, 2, 2, 0, 6, 8, 2, 2, 2, 0, 1, 1], | ||
|  |     [2, 1, 16, 3, 2, 2, 0, 8, 16, 4, 4, 2, 2, 1, 1], | ||
|  |     [2, 1, 16, 5, 2, 2, 0, 16, 16, 4, 4, 2, 2, 1, 1], | ||
|  |     [1, 1, 32, 5, 1, 6, 4, 4, 32, 4, 4, 2, 2, 1, 1], | ||
|  |     [2, 1, 64, 5, 1, 6, 8, 8, 64, 8, 8, 2, 2, 1, 1], | ||
|  |     [1, 1, 96, 3, 1, 6, 8, 8, 96, 8, 8, 2, 2, 1, 2], | ||
|  |     [1, 1, 576, 3, 1, 6, 12, 12, 0, 0, 0, 2, 2, 1, 2], | ||
|  | ] | ||
|  | M2_cfgs = [ | ||
|  |     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4 | ||
|  |     [2, 1, 12, 3, 2, 2, 0, 8, 12, 4, 4, 2, 0, 1, 1], | ||
|  |     [2, 1, 16, 3, 2, 2, 0, 12, 16, 4, 4, 2, 2, 1, 1], | ||
|  |     [1, 1, 24, 3, 2, 2, 0, 16, 24, 4, 4, 2, 2, 1, 1], | ||
|  |     [2, 1, 32, 5, 1, 6, 6, 6, 32, 4, 4, 2, 2, 1, 1], | ||
|  |     [1, 1, 32, 5, 1, 6, 8, 8, 32, 4, 4, 2, 2, 1, 2], | ||
|  |     [1, 1, 64, 5, 1, 6, 8, 8, 64, 8, 8, 2, 2, 1, 2], | ||
|  |     [2, 1, 96, 5, 1, 6, 8, 8, 96, 8, 8, 2, 2, 1, 2], | ||
|  |     [1, 1, 128, 3, 1, 6, 12, 12, 128, 8, 8, 2, 2, 1, 2], | ||
|  |     [1, 1, 768, 3, 1, 6, 16, 16, 0, 0, 0, 2, 2, 1, 2], | ||
|  | ] | ||
|  | M3_cfgs = [ | ||
|  |     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4 | ||
|  |     [2, 1, 16, 3, 2, 2, 0, 12, 16, 4, 4, 0, 2, 0, 1], | ||
|  |     [2, 1, 24, 3, 2, 2, 0, 16, 24, 4, 4, 0, 2, 0, 1], | ||
|  |     [1, 1, 24, 3, 2, 2, 0, 24, 24, 4, 4, 0, 2, 0, 1], | ||
|  |     [2, 1, 32, 5, 1, 6, 6, 6, 32, 4, 4, 0, 2, 0, 1], | ||
|  |     [1, 1, 32, 5, 1, 6, 8, 8, 32, 4, 4, 0, 2, 0, 2], | ||
|  |     [1, 1, 64, 5, 1, 6, 8, 8, 48, 8, 8, 0, 2, 0, 2], | ||
|  |     [1, 1, 80, 5, 1, 6, 8, 8, 80, 8, 8, 0, 2, 0, 2], | ||
|  |     [1, 1, 80, 5, 1, 6, 10, 10, 80, 8, 8, 0, 2, 0, 2], | ||
|  |     [1, 1, 120, 5, 1, 6, 10, 10, 120, 10, 10, 0, 2, 0, 2], | ||
|  |     [1, 1, 120, 5, 1, 6, 12, 12, 120, 10, 10, 0, 2, 0, 2], | ||
|  |     [1, 1, 144, 3, 1, 6, 12, 12, 144, 12, 12, 0, 2, 0, 2], | ||
|  |     [1, 1, 432, 3, 1, 3, 12, 12, 0, 0, 0, 0, 2, 0, 2], | ||
|  | ] | ||
|  | 
 | ||
|  | 
 | ||
|  | def get_micronet_config(mode): | ||
|  |     return eval(mode + '_cfgs') | ||
|  | 
 | ||
|  | 
 | ||
|  | class MaxGroupPooling(nn.Layer): | ||
|  |     def __init__(self, channel_per_group=2): | ||
|  |         super(MaxGroupPooling, self).__init__() | ||
|  |         self.channel_per_group = channel_per_group | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         if self.channel_per_group == 1: | ||
|  |             return x | ||
|  |         # max op | ||
|  |         b, c, h, w = x.shape | ||
|  | 
 | ||
|  |         # reshape | ||
|  |         y = paddle.reshape(x, [b, c // self.channel_per_group, -1, h, w]) | ||
|  |         out = paddle.max(y, axis=2) | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class SpatialSepConvSF(nn.Layer): | ||
|  |     def __init__(self, inp, oups, kernel_size, stride): | ||
|  |         super(SpatialSepConvSF, self).__init__() | ||
|  | 
 | ||
|  |         oup1, oup2 = oups | ||
|  |         self.conv = nn.Sequential( | ||
|  |             nn.Conv2D( | ||
|  |                 inp, | ||
|  |                 oup1, (kernel_size, 1), (stride, 1), (kernel_size // 2, 0), | ||
|  |                 bias_attr=False, | ||
|  |                 groups=1), | ||
|  |             nn.BatchNorm2D(oup1), | ||
|  |             nn.Conv2D( | ||
|  |                 oup1, | ||
|  |                 oup1 * oup2, (1, kernel_size), (1, stride), | ||
|  |                 (0, kernel_size // 2), | ||
|  |                 bias_attr=False, | ||
|  |                 groups=oup1), | ||
|  |             nn.BatchNorm2D(oup1 * oup2), | ||
|  |             ChannelShuffle(oup1), ) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         out = self.conv(x) | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class ChannelShuffle(nn.Layer): | ||
|  |     def __init__(self, groups): | ||
|  |         super(ChannelShuffle, self).__init__() | ||
|  |         self.groups = groups | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         b, c, h, w = x.shape | ||
|  | 
 | ||
|  |         channels_per_group = c // self.groups | ||
|  | 
 | ||
|  |         # reshape | ||
|  |         x = paddle.reshape(x, [b, self.groups, channels_per_group, h, w]) | ||
|  | 
 | ||
|  |         x = paddle.transpose(x, (0, 2, 1, 3, 4)) | ||
|  |         out = paddle.reshape(x, [b, -1, h, w]) | ||
|  | 
 | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class StemLayer(nn.Layer): | ||
|  |     def __init__(self, inp, oup, stride, groups=(4, 4)): | ||
|  |         super(StemLayer, self).__init__() | ||
|  | 
 | ||
|  |         g1, g2 = groups | ||
|  |         self.stem = nn.Sequential( | ||
|  |             SpatialSepConvSF(inp, groups, 3, stride), | ||
|  |             MaxGroupPooling(2) if g1 * g2 == 2 * oup else nn.ReLU6()) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         out = self.stem(x) | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class DepthSpatialSepConv(nn.Layer): | ||
|  |     def __init__(self, inp, expand, kernel_size, stride): | ||
|  |         super(DepthSpatialSepConv, self).__init__() | ||
|  | 
 | ||
|  |         exp1, exp2 = expand | ||
|  | 
 | ||
|  |         hidden_dim = inp * exp1 | ||
|  |         oup = inp * exp1 * exp2 | ||
|  | 
 | ||
|  |         self.conv = nn.Sequential( | ||
|  |             nn.Conv2D( | ||
|  |                 inp, | ||
|  |                 inp * exp1, (kernel_size, 1), (stride, 1), | ||
|  |                 (kernel_size // 2, 0), | ||
|  |                 bias_attr=False, | ||
|  |                 groups=inp), | ||
|  |             nn.BatchNorm2D(inp * exp1), | ||
|  |             nn.Conv2D( | ||
|  |                 hidden_dim, | ||
|  |                 oup, (1, kernel_size), | ||
|  |                 1, (0, kernel_size // 2), | ||
|  |                 bias_attr=False, | ||
|  |                 groups=hidden_dim), | ||
|  |             nn.BatchNorm2D(oup)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         x = self.conv(x) | ||
|  |         return x | ||
|  | 
 | ||
|  | 
 | ||
|  | class GroupConv(nn.Layer): | ||
|  |     def __init__(self, inp, oup, groups=2): | ||
|  |         super(GroupConv, self).__init__() | ||
|  |         self.inp = inp | ||
|  |         self.oup = oup | ||
|  |         self.groups = groups | ||
|  |         self.conv = nn.Sequential( | ||
|  |             nn.Conv2D( | ||
|  |                 inp, oup, 1, 1, 0, bias_attr=False, groups=self.groups[0]), | ||
|  |             nn.BatchNorm2D(oup)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         x = self.conv(x) | ||
|  |         return x | ||
|  | 
 | ||
|  | 
 | ||
|  | class DepthConv(nn.Layer): | ||
|  |     def __init__(self, inp, oup, kernel_size, stride): | ||
|  |         super(DepthConv, self).__init__() | ||
|  |         self.conv = nn.Sequential( | ||
|  |             nn.Conv2D( | ||
|  |                 inp, | ||
|  |                 oup, | ||
|  |                 kernel_size, | ||
|  |                 stride, | ||
|  |                 kernel_size // 2, | ||
|  |                 bias_attr=False, | ||
|  |                 groups=inp), | ||
|  |             nn.BatchNorm2D(oup)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         out = self.conv(x) | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class DYShiftMax(nn.Layer): | ||
|  |     def __init__(self, | ||
|  |                  inp, | ||
|  |                  oup, | ||
|  |                  reduction=4, | ||
|  |                  act_max=1.0, | ||
|  |                  act_relu=True, | ||
|  |                  init_a=[0.0, 0.0], | ||
|  |                  init_b=[0.0, 0.0], | ||
|  |                  relu_before_pool=False, | ||
|  |                  g=None, | ||
|  |                  expansion=False): | ||
|  |         super(DYShiftMax, self).__init__() | ||
|  |         self.oup = oup | ||
|  |         self.act_max = act_max * 2 | ||
|  |         self.act_relu = act_relu | ||
|  |         self.avg_pool = nn.Sequential(nn.ReLU() if relu_before_pool == True else | ||
|  |                                       nn.Sequential(), nn.AdaptiveAvgPool2D(1)) | ||
|  | 
 | ||
|  |         self.exp = 4 if act_relu else 2 | ||
|  |         self.init_a = init_a | ||
|  |         self.init_b = init_b | ||
|  | 
 | ||
|  |         # determine squeeze | ||
|  |         squeeze = make_divisible(inp // reduction, 4) | ||
|  |         if squeeze < 4: | ||
|  |             squeeze = 4 | ||
|  | 
 | ||
|  |         self.fc = nn.Sequential( | ||
|  |             nn.Linear(inp, squeeze), | ||
|  |             nn.ReLU(), nn.Linear(squeeze, oup * self.exp), nn.Hardsigmoid()) | ||
|  | 
 | ||
|  |         if g is None: | ||
|  |             g = 1 | ||
|  |         self.g = g[1] | ||
|  |         if self.g != 1 and expansion: | ||
|  |             self.g = inp // self.g | ||
|  | 
 | ||
|  |         self.gc = inp // self.g | ||
|  |         index = paddle.to_tensor([range(inp)]) | ||
|  |         index = paddle.reshape(index, [1, inp, 1, 1]) | ||
|  |         index = paddle.reshape(index, [1, self.g, self.gc, 1, 1]) | ||
|  |         indexgs = paddle.split(index, [1, self.g - 1], axis=1) | ||
|  |         indexgs = paddle.concat((indexgs[1], indexgs[0]), axis=1) | ||
|  |         indexs = paddle.split(indexgs, [1, self.gc - 1], axis=2) | ||
|  |         indexs = paddle.concat((indexs[1], indexs[0]), axis=2) | ||
|  |         self.index = paddle.reshape(indexs, [inp]) | ||
|  |         self.expansion = expansion | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         x_in = x | ||
|  |         x_out = x | ||
|  | 
 | ||
|  |         b, c, _, _ = x_in.shape | ||
|  |         y = self.avg_pool(x_in) | ||
|  |         y = paddle.reshape(y, [b, c]) | ||
|  |         y = self.fc(y) | ||
|  |         y = paddle.reshape(y, [b, self.oup * self.exp, 1, 1]) | ||
|  |         y = (y - 0.5) * self.act_max | ||
|  | 
 | ||
|  |         n2, c2, h2, w2 = x_out.shape | ||
|  |         x2 = paddle.to_tensor(x_out.numpy()[:, self.index.numpy(), :, :]) | ||
|  | 
 | ||
|  |         if self.exp == 4: | ||
|  |             temp = y.shape | ||
|  |             a1, b1, a2, b2 = paddle.split(y, temp[1] // self.oup, axis=1) | ||
|  | 
 | ||
|  |             a1 = a1 + self.init_a[0] | ||
|  |             a2 = a2 + self.init_a[1] | ||
|  | 
 | ||
|  |             b1 = b1 + self.init_b[0] | ||
|  |             b2 = b2 + self.init_b[1] | ||
|  | 
 | ||
|  |             z1 = x_out * a1 + x2 * b1 | ||
|  |             z2 = x_out * a2 + x2 * b2 | ||
|  | 
 | ||
|  |             out = paddle.maximum(z1, z2) | ||
|  | 
 | ||
|  |         elif self.exp == 2: | ||
|  |             temp = y.shape | ||
|  |             a1, b1 = paddle.split(y, temp[1] // self.oup, axis=1) | ||
|  |             a1 = a1 + self.init_a[0] | ||
|  |             b1 = b1 + self.init_b[0] | ||
|  |             out = x_out * a1 + x2 * b1 | ||
|  | 
 | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class DYMicroBlock(nn.Layer): | ||
|  |     def __init__(self, | ||
|  |                  inp, | ||
|  |                  oup, | ||
|  |                  kernel_size=3, | ||
|  |                  stride=1, | ||
|  |                  ch_exp=(2, 2), | ||
|  |                  ch_per_group=4, | ||
|  |                  groups_1x1=(1, 1), | ||
|  |                  depthsep=True, | ||
|  |                  shuffle=False, | ||
|  |                  activation_cfg=None): | ||
|  |         super(DYMicroBlock, self).__init__() | ||
|  | 
 | ||
|  |         self.identity = stride == 1 and inp == oup | ||
|  | 
 | ||
|  |         y1, y2, y3 = activation_cfg['dy'] | ||
|  |         act_reduction = 8 * activation_cfg['ratio'] | ||
|  |         init_a = activation_cfg['init_a'] | ||
|  |         init_b = activation_cfg['init_b'] | ||
|  | 
 | ||
|  |         t1 = ch_exp | ||
|  |         gs1 = ch_per_group | ||
|  |         hidden_fft, g1, g2 = groups_1x1 | ||
|  |         hidden_dim2 = inp * t1[0] * t1[1] | ||
|  | 
 | ||
|  |         if gs1[0] == 0: | ||
|  |             self.layers = nn.Sequential( | ||
|  |                 DepthSpatialSepConv(inp, t1, kernel_size, stride), | ||
|  |                 DYShiftMax( | ||
|  |                     hidden_dim2, | ||
|  |                     hidden_dim2, | ||
|  |                     act_max=2.0, | ||
|  |                     act_relu=True if y2 == 2 else False, | ||
|  |                     init_a=init_a, | ||
|  |                     reduction=act_reduction, | ||
|  |                     init_b=init_b, | ||
|  |                     g=gs1, | ||
|  |                     expansion=False) if y2 > 0 else nn.ReLU6(), | ||
|  |                 ChannelShuffle(gs1[1]) if shuffle else nn.Sequential(), | ||
|  |                 ChannelShuffle(hidden_dim2 // 2) | ||
|  |                 if shuffle and y2 != 0 else nn.Sequential(), | ||
|  |                 GroupConv(hidden_dim2, oup, (g1, g2)), | ||
|  |                 DYShiftMax( | ||
|  |                     oup, | ||
|  |                     oup, | ||
|  |                     act_max=2.0, | ||
|  |                     act_relu=False, | ||
|  |                     init_a=[1.0, 0.0], | ||
|  |                     reduction=act_reduction // 2, | ||
|  |                     init_b=[0.0, 0.0], | ||
|  |                     g=(g1, g2), | ||
|  |                     expansion=False) if y3 > 0 else nn.Sequential(), | ||
|  |                 ChannelShuffle(g2) if shuffle else nn.Sequential(), | ||
|  |                 ChannelShuffle(oup // 2) | ||
|  |                 if shuffle and oup % 2 == 0 and y3 != 0 else nn.Sequential(), ) | ||
|  |         elif g2 == 0: | ||
|  |             self.layers = nn.Sequential( | ||
|  |                 GroupConv(inp, hidden_dim2, gs1), | ||
|  |                 DYShiftMax( | ||
|  |                     hidden_dim2, | ||
|  |                     hidden_dim2, | ||
|  |                     act_max=2.0, | ||
|  |                     act_relu=False, | ||
|  |                     init_a=[1.0, 0.0], | ||
|  |                     reduction=act_reduction, | ||
|  |                     init_b=[0.0, 0.0], | ||
|  |                     g=gs1, | ||
|  |                     expansion=False) if y3 > 0 else nn.Sequential(), ) | ||
|  |         else: | ||
|  |             self.layers = nn.Sequential( | ||
|  |                 GroupConv(inp, hidden_dim2, gs1), | ||
|  |                 DYShiftMax( | ||
|  |                     hidden_dim2, | ||
|  |                     hidden_dim2, | ||
|  |                     act_max=2.0, | ||
|  |                     act_relu=True if y1 == 2 else False, | ||
|  |                     init_a=init_a, | ||
|  |                     reduction=act_reduction, | ||
|  |                     init_b=init_b, | ||
|  |                     g=gs1, | ||
|  |                     expansion=False) if y1 > 0 else nn.ReLU6(), | ||
|  |                 ChannelShuffle(gs1[1]) if shuffle else nn.Sequential(), | ||
|  |                 DepthSpatialSepConv(hidden_dim2, (1, 1), kernel_size, stride) | ||
|  |                 if depthsep else | ||
|  |                 DepthConv(hidden_dim2, hidden_dim2, kernel_size, stride), | ||
|  |                 nn.Sequential(), | ||
|  |                 DYShiftMax( | ||
|  |                     hidden_dim2, | ||
|  |                     hidden_dim2, | ||
|  |                     act_max=2.0, | ||
|  |                     act_relu=True if y2 == 2 else False, | ||
|  |                     init_a=init_a, | ||
|  |                     reduction=act_reduction, | ||
|  |                     init_b=init_b, | ||
|  |                     g=gs1, | ||
|  |                     expansion=True) if y2 > 0 else nn.ReLU6(), | ||
|  |                 ChannelShuffle(hidden_dim2 // 4) | ||
|  |                 if shuffle and y1 != 0 and y2 != 0 else nn.Sequential() | ||
|  |                 if y1 == 0 and y2 == 0 else ChannelShuffle(hidden_dim2 // 2), | ||
|  |                 GroupConv(hidden_dim2, oup, (g1, g2)), | ||
|  |                 DYShiftMax( | ||
|  |                     oup, | ||
|  |                     oup, | ||
|  |                     act_max=2.0, | ||
|  |                     act_relu=False, | ||
|  |                     init_a=[1.0, 0.0], | ||
|  |                     reduction=act_reduction // 2 | ||
|  |                     if oup < hidden_dim2 else act_reduction, | ||
|  |                     init_b=[0.0, 0.0], | ||
|  |                     g=(g1, g2), | ||
|  |                     expansion=False) if y3 > 0 else nn.Sequential(), | ||
|  |                 ChannelShuffle(g2) if shuffle else nn.Sequential(), | ||
|  |                 ChannelShuffle(oup // 2) | ||
|  |                 if shuffle and y3 != 0 else nn.Sequential(), ) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         identity = x | ||
|  |         out = self.layers(x) | ||
|  | 
 | ||
|  |         if self.identity: | ||
|  |             out = out + identity | ||
|  | 
 | ||
|  |         return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class MicroNet(nn.Layer): | ||
|  |     """
 | ||
|  |         the MicroNet backbone network for recognition module. | ||
|  |         Args: | ||
|  |             mode(str): {'M0', 'M1', 'M2', 'M3'}  | ||
|  |                 Four models are proposed based on four different computational costs (4M, 6M, 12M, 21M MAdds) | ||
|  |                 Default: 'M3'. | ||
|  |     """
 | ||
|  | 
 | ||
|  |     def __init__(self, mode='M3', **kwargs): | ||
|  |         super(MicroNet, self).__init__() | ||
|  | 
 | ||
|  |         self.cfgs = get_micronet_config(mode) | ||
|  | 
 | ||
|  |         activation_cfg = {} | ||
|  |         if mode == 'M0': | ||
|  |             input_channel = 4 | ||
|  |             stem_groups = 2, 2 | ||
|  |             out_ch = 384 | ||
|  |             activation_cfg['init_a'] = 1.0, 1.0 | ||
|  |             activation_cfg['init_b'] = 0.0, 0.0 | ||
|  |         elif mode == 'M1': | ||
|  |             input_channel = 6 | ||
|  |             stem_groups = 3, 2 | ||
|  |             out_ch = 576 | ||
|  |             activation_cfg['init_a'] = 1.0, 1.0 | ||
|  |             activation_cfg['init_b'] = 0.0, 0.0 | ||
|  |         elif mode == 'M2': | ||
|  |             input_channel = 8 | ||
|  |             stem_groups = 4, 2 | ||
|  |             out_ch = 768 | ||
|  |             activation_cfg['init_a'] = 1.0, 1.0 | ||
|  |             activation_cfg['init_b'] = 0.0, 0.0 | ||
|  |         elif mode == 'M3': | ||
|  |             input_channel = 12 | ||
|  |             stem_groups = 4, 3 | ||
|  |             out_ch = 432 | ||
|  |             activation_cfg['init_a'] = 1.0, 0.5 | ||
|  |             activation_cfg['init_b'] = 0.0, 0.5 | ||
|  |         else: | ||
|  |             raise NotImplementedError("mode[" + mode + | ||
|  |                                       "_model] is not implemented!") | ||
|  | 
 | ||
|  |         layers = [StemLayer(3, input_channel, stride=2, groups=stem_groups)] | ||
|  | 
 | ||
|  |         for idx, val in enumerate(self.cfgs): | ||
|  |             s, n, c, ks, c1, c2, g1, g2, c3, g3, g4, y1, y2, y3, r = val | ||
|  | 
 | ||
|  |             t1 = (c1, c2) | ||
|  |             gs1 = (g1, g2) | ||
|  |             gs2 = (c3, g3, g4) | ||
|  |             activation_cfg['dy'] = [y1, y2, y3] | ||
|  |             activation_cfg['ratio'] = r | ||
|  | 
 | ||
|  |             output_channel = c | ||
|  |             layers.append( | ||
|  |                 DYMicroBlock( | ||
|  |                     input_channel, | ||
|  |                     output_channel, | ||
|  |                     kernel_size=ks, | ||
|  |                     stride=s, | ||
|  |                     ch_exp=t1, | ||
|  |                     ch_per_group=gs1, | ||
|  |                     groups_1x1=gs2, | ||
|  |                     depthsep=True, | ||
|  |                     shuffle=True, | ||
|  |                     activation_cfg=activation_cfg, )) | ||
|  |             input_channel = output_channel | ||
|  |             for i in range(1, n): | ||
|  |                 layers.append( | ||
|  |                     DYMicroBlock( | ||
|  |                         input_channel, | ||
|  |                         output_channel, | ||
|  |                         kernel_size=ks, | ||
|  |                         stride=1, | ||
|  |                         ch_exp=t1, | ||
|  |                         ch_per_group=gs1, | ||
|  |                         groups_1x1=gs2, | ||
|  |                         depthsep=True, | ||
|  |                         shuffle=True, | ||
|  |                         activation_cfg=activation_cfg, )) | ||
|  |                 input_channel = output_channel | ||
|  |         self.features = nn.Sequential(*layers) | ||
|  | 
 | ||
|  |         self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | ||
|  | 
 | ||
|  |         self.out_channels = make_divisible(out_ch) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         x = self.features(x) | ||
|  |         x = self.pool(x) | ||
|  |         return x |