| 
									
										
										
										
											2021-10-13 14:05:22 +08:00
										 |  |  | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #    http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-04 19:06:54 +08:00
										 |  |  | # This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import math | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import paddle | 
					
						
							| 
									
										
										
										
											2021-10-12 16:20:37 +08:00
										 |  |  | from paddle import ParamAttr, reshape, transpose | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  | import paddle.nn as nn | 
					
						
							|  |  |  | import paddle.nn.functional as F | 
					
						
							|  |  |  | from paddle.nn import Conv2D, BatchNorm, Linear, Dropout | 
					
						
							|  |  |  | from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D | 
					
						
							|  |  |  | from paddle.nn.initializer import KaimingNormal | 
					
						
							|  |  |  | from paddle.regularizer import L2Decay | 
					
						
							| 
									
										
										
										
											2021-10-12 16:20:37 +08:00
										 |  |  | from paddle.nn.functional import hardswish, hardsigmoid | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ConvBNLayer(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  num_channels, | 
					
						
							|  |  |  |                  filter_size, | 
					
						
							|  |  |  |                  num_filters, | 
					
						
							|  |  |  |                  stride, | 
					
						
							|  |  |  |                  padding, | 
					
						
							|  |  |  |                  channels=None, | 
					
						
							|  |  |  |                  num_groups=1, | 
					
						
							|  |  |  |                  act='hard_swish'): | 
					
						
							|  |  |  |         super(ConvBNLayer, self).__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self._conv = Conv2D( | 
					
						
							|  |  |  |             in_channels=num_channels, | 
					
						
							|  |  |  |             out_channels=num_filters, | 
					
						
							|  |  |  |             kernel_size=filter_size, | 
					
						
							|  |  |  |             stride=stride, | 
					
						
							|  |  |  |             padding=padding, | 
					
						
							|  |  |  |             groups=num_groups, | 
					
						
							|  |  |  |             weight_attr=ParamAttr(initializer=KaimingNormal()), | 
					
						
							|  |  |  |             bias_attr=False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self._batch_norm = BatchNorm( | 
					
						
							|  |  |  |             num_filters, | 
					
						
							|  |  |  |             act=act, | 
					
						
							|  |  |  |             param_attr=ParamAttr(regularizer=L2Decay(0.0)), | 
					
						
							|  |  |  |             bias_attr=ParamAttr(regularizer=L2Decay(0.0))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         y = self._conv(inputs) | 
					
						
							|  |  |  |         y = self._batch_norm(y) | 
					
						
							|  |  |  |         return y | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class DepthwiseSeparable(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  num_channels, | 
					
						
							|  |  |  |                  num_filters1, | 
					
						
							|  |  |  |                  num_filters2, | 
					
						
							|  |  |  |                  num_groups, | 
					
						
							|  |  |  |                  stride, | 
					
						
							|  |  |  |                  scale, | 
					
						
							|  |  |  |                  dw_size=3, | 
					
						
							|  |  |  |                  padding=1, | 
					
						
							|  |  |  |                  use_se=False): | 
					
						
							|  |  |  |         super(DepthwiseSeparable, self).__init__() | 
					
						
							|  |  |  |         self.use_se = use_se | 
					
						
							|  |  |  |         self._depthwise_conv = ConvBNLayer( | 
					
						
							|  |  |  |             num_channels=num_channels, | 
					
						
							|  |  |  |             num_filters=int(num_filters1 * scale), | 
					
						
							|  |  |  |             filter_size=dw_size, | 
					
						
							|  |  |  |             stride=stride, | 
					
						
							|  |  |  |             padding=padding, | 
					
						
							|  |  |  |             num_groups=int(num_groups * scale)) | 
					
						
							|  |  |  |         if use_se: | 
					
						
							|  |  |  |             self._se = SEModule(int(num_filters1 * scale)) | 
					
						
							|  |  |  |         self._pointwise_conv = ConvBNLayer( | 
					
						
							|  |  |  |             num_channels=int(num_filters1 * scale), | 
					
						
							|  |  |  |             filter_size=1, | 
					
						
							|  |  |  |             num_filters=int(num_filters2 * scale), | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         y = self._depthwise_conv(inputs) | 
					
						
							|  |  |  |         if self.use_se: | 
					
						
							|  |  |  |             y = self._se(y) | 
					
						
							|  |  |  |         y = self._pointwise_conv(y) | 
					
						
							|  |  |  |         return y | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class MobileNetV1Enhance(nn.Layer): | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  in_channels=3, | 
					
						
							|  |  |  |                  scale=0.5, | 
					
						
							|  |  |  |                  last_conv_stride=1, | 
					
						
							|  |  |  |                  last_pool_type='max', | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.scale = scale | 
					
						
							|  |  |  |         self.block_list = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.conv1 = ConvBNLayer( | 
					
						
							|  |  |  |             num_channels=3, | 
					
						
							|  |  |  |             filter_size=3, | 
					
						
							|  |  |  |             channels=3, | 
					
						
							|  |  |  |             num_filters=int(32 * scale), | 
					
						
							|  |  |  |             stride=2, | 
					
						
							|  |  |  |             padding=1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv2_1 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(32 * scale), | 
					
						
							|  |  |  |             num_filters1=32, | 
					
						
							|  |  |  |             num_filters2=64, | 
					
						
							|  |  |  |             num_groups=32, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv2_1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv2_2 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(64 * scale), | 
					
						
							|  |  |  |             num_filters1=64, | 
					
						
							|  |  |  |             num_filters2=128, | 
					
						
							|  |  |  |             num_groups=64, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv2_2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv3_1 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(128 * scale), | 
					
						
							|  |  |  |             num_filters1=128, | 
					
						
							|  |  |  |             num_filters2=128, | 
					
						
							|  |  |  |             num_groups=128, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv3_1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv3_2 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(128 * scale), | 
					
						
							|  |  |  |             num_filters1=128, | 
					
						
							|  |  |  |             num_filters2=256, | 
					
						
							|  |  |  |             num_groups=128, | 
					
						
							|  |  |  |             stride=(2, 1), | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv3_2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv4_1 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(256 * scale), | 
					
						
							|  |  |  |             num_filters1=256, | 
					
						
							|  |  |  |             num_filters2=256, | 
					
						
							|  |  |  |             num_groups=256, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv4_1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv4_2 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(256 * scale), | 
					
						
							|  |  |  |             num_filters1=256, | 
					
						
							|  |  |  |             num_filters2=512, | 
					
						
							|  |  |  |             num_groups=256, | 
					
						
							|  |  |  |             stride=(2, 1), | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv4_2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for _ in range(5): | 
					
						
							|  |  |  |             conv5 = DepthwiseSeparable( | 
					
						
							|  |  |  |                 num_channels=int(512 * scale), | 
					
						
							|  |  |  |                 num_filters1=512, | 
					
						
							|  |  |  |                 num_filters2=512, | 
					
						
							|  |  |  |                 num_groups=512, | 
					
						
							|  |  |  |                 stride=1, | 
					
						
							|  |  |  |                 dw_size=5, | 
					
						
							|  |  |  |                 padding=2, | 
					
						
							|  |  |  |                 scale=scale, | 
					
						
							|  |  |  |                 use_se=False) | 
					
						
							|  |  |  |             self.block_list.append(conv5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv5_6 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(512 * scale), | 
					
						
							|  |  |  |             num_filters1=512, | 
					
						
							|  |  |  |             num_filters2=1024, | 
					
						
							|  |  |  |             num_groups=512, | 
					
						
							|  |  |  |             stride=(2, 1), | 
					
						
							|  |  |  |             dw_size=5, | 
					
						
							|  |  |  |             padding=2, | 
					
						
							|  |  |  |             scale=scale, | 
					
						
							|  |  |  |             use_se=True) | 
					
						
							|  |  |  |         self.block_list.append(conv5_6) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv6 = DepthwiseSeparable( | 
					
						
							|  |  |  |             num_channels=int(1024 * scale), | 
					
						
							|  |  |  |             num_filters1=1024, | 
					
						
							|  |  |  |             num_filters2=1024, | 
					
						
							|  |  |  |             num_groups=1024, | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |             stride=last_conv_stride, | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  |             dw_size=5, | 
					
						
							|  |  |  |             padding=2, | 
					
						
							|  |  |  |             use_se=True, | 
					
						
							|  |  |  |             scale=scale) | 
					
						
							|  |  |  |         self.block_list.append(conv6) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.block_list = nn.Sequential(*self.block_list) | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |         if last_pool_type == 'avg': | 
					
						
							|  |  |  |             self.pool = nn.AvgPool2D(kernel_size=2, stride=2, padding=0) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | 
					
						
							| 
									
										
										
										
											2021-07-01 17:52:16 +08:00
										 |  |  |         self.out_channels = int(1024 * scale) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         y = self.conv1(inputs) | 
					
						
							|  |  |  |         y = self.block_list(y) | 
					
						
							|  |  |  |         y = self.pool(y) | 
					
						
							|  |  |  |         return y | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SEModule(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, channel, reduction=4): | 
					
						
							|  |  |  |         super(SEModule, self).__init__() | 
					
						
							|  |  |  |         self.avg_pool = AdaptiveAvgPool2D(1) | 
					
						
							|  |  |  |         self.conv1 = Conv2D( | 
					
						
							|  |  |  |             in_channels=channel, | 
					
						
							|  |  |  |             out_channels=channel // reduction, | 
					
						
							|  |  |  |             kernel_size=1, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=0, | 
					
						
							|  |  |  |             weight_attr=ParamAttr(), | 
					
						
							|  |  |  |             bias_attr=ParamAttr()) | 
					
						
							|  |  |  |         self.conv2 = Conv2D( | 
					
						
							|  |  |  |             in_channels=channel // reduction, | 
					
						
							|  |  |  |             out_channels=channel, | 
					
						
							|  |  |  |             kernel_size=1, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=0, | 
					
						
							|  |  |  |             weight_attr=ParamAttr(), | 
					
						
							|  |  |  |             bias_attr=ParamAttr()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         outputs = self.avg_pool(inputs) | 
					
						
							|  |  |  |         outputs = self.conv1(outputs) | 
					
						
							|  |  |  |         outputs = F.relu(outputs) | 
					
						
							|  |  |  |         outputs = self.conv2(outputs) | 
					
						
							|  |  |  |         outputs = hardsigmoid(outputs) | 
					
						
							|  |  |  |         return paddle.multiply(x=inputs, y=outputs) |