mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-03 23:19:13 +00:00
100 lines
4.6 KiB
Markdown
100 lines
4.6 KiB
Markdown
![]() |
---
|
|||
|
typora-copy-images-to: images
|
|||
|
comments: true
|
|||
|
---
|
|||
|
|
|||
|
# DB与DB++
|
|||
|
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
论文信息:
|
|||
|
> [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947)
|
|||
|
> Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
|
|||
|
> AAAI, 2020
|
|||
|
|
|||
|
> [Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion](https://arxiv.org/abs/2202.10304)
|
|||
|
> Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang
|
|||
|
> TPAMI, 2022
|
|||
|
|
|||
|
在ICDAR2015文本检测公开数据集上,算法复现效果如下:
|
|||
|
|
|||
|
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
|||
|
| --- | --- | --- | --- | --- | --- | --- |
|
|||
|
|DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
|||
|
|DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
|||
|
|DB++|ResNet50|[configs/det/det_r50_db++_icdar15.yml](../../configs/det/det_r50_db++_icdar15.yml)|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
|
|||
|
|
|||
|
在TD_TR文本检测公开数据集上,算法复现效果如下:
|
|||
|
|
|||
|
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
|||
|
| --- | --- | --- | --- | --- | --- | --- |
|
|||
|
|DB++|ResNet50|[configs/det/det_r50_db++_td_tr.yml](../../configs/det/det_r50_db++_td_tr.yml)|92.92%|86.48%|89.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_td_tr_train.tar)|
|
|||
|
|
|||
|
## 2. 环境配置
|
|||
|
|
|||
|
请先参考[《运行环境准备》](../../ppocr/environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](../../ppocr/blog/clone.md)克隆项目代码。
|
|||
|
|
|||
|
## 3. 模型训练、评估、预测
|
|||
|
|
|||
|
请参考[文本检测训练教程](../../ppocr/model_train/detection.md)。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
|
|||
|
|
|||
|
## 4. 推理部署
|
|||
|
|
|||
|
### 4.1 Python推理
|
|||
|
|
|||
|
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
|
|||
|
|
|||
|
```bash linenums="1"
|
|||
|
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
|||
|
```
|
|||
|
|
|||
|
DB文本检测模型推理,可以执行如下命令:
|
|||
|
|
|||
|
```bash linenums="1"
|
|||
|
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/" --det_algorithm="DB"
|
|||
|
```
|
|||
|
|
|||
|
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为`det_res`。结果示例如下:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
|
|||
|
|
|||
|
### 4.2 C++推理
|
|||
|
|
|||
|
准备好推理模型后,参考[cpp infer](../../ppocr/infer_deploy/cpp_infer.md)教程进行操作即可。
|
|||
|
|
|||
|
### 4.3 Serving服务化部署
|
|||
|
|
|||
|
准备好推理模型后,参考[pdserving](../../ppocr/infer_deploy/paddle_server.md)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
|
|||
|
|
|||
|
### 4.4 更多推理部署
|
|||
|
|
|||
|
DB模型还支持以下推理部署方式:
|
|||
|
|
|||
|
- Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../ppocr/infer_deploy/paddle2onnx.md)教程操作。
|
|||
|
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
```bibtex
|
|||
|
@inproceedings{liao2020real,
|
|||
|
title={Real-time scene text detection with differentiable binarization},
|
|||
|
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
|||
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
|||
|
volume={34},
|
|||
|
number={07},
|
|||
|
pages={11474--11481},
|
|||
|
year={2020}
|
|||
|
}
|
|||
|
|
|||
|
@article{liao2022real,
|
|||
|
title={Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion},
|
|||
|
author={Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang},
|
|||
|
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
|||
|
year={2022},
|
|||
|
publisher={IEEE}
|
|||
|
}
|
|||
|
```
|