1534 lines
26 KiB
Markdown
Raw Normal View History

# 一、PP-StructureV3 简介
PP-StructureV3 能够将文档图像和 PDF 文件高效转换为结构化内容(如 Markdown 格式并具备版面区域检测、表格识别、公式识别、图表理解以及多栏阅读顺序恢复等强大功能。该工具在多种文档类型下均表现优异能够处理复杂的文档数据。PP-StructureV3 支持灵活的服务化部署,兼容多种硬件环境,并可通过多种编程语言进行调用。同时,支持二次开发,用户可以基于自有数据集进行模型训练和优化,训练后的模型可实现无缝集成。
<div align="center">
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/paddleocr/PP-StructureV3/algorithm_ppstructurev3.png" width="800"/>
</div>
# 二、关键指标
<div align="center">
<table>
<thead>
<tr>
<th rowspan="2">Method Type</th>
<th rowspan="2">Methods</th>
<th colspan="2">Overall<sup>Edit</sup></th>
<th colspan="2">Text<sup>Edit</sup></th>
<th colspan="2">Formula<sup>Edit</sup></th>
<th colspan="2">Table<sup>Edit</sup></th>
<th colspan="2">Read Order<sup>Edit</sup></th>
</tr>
<tr>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="9">Pipeline Tools</td>
<td><b>PP-structureV3</b></td>
2025-07-05 15:24:55 +08:00
<td><b>0.145</b></td>
<td><b>0.206</b></td>
<td>0.058</td>
<td><b>0.088</b></td>
<td>0.295</td>
<td>0.535</td>
<td>0.159</td>
<td><b>0.109</b></td>
2025-07-05 15:24:55 +08:00
<td>0.069</td>
<td><b>0.091</b></td>
</tr>
<tr>
<td>MinerU-0.9.3</td>
<td>0.15</td>
<td>0.357</td>
<td>0.061</td>
<td>0.215</td>
<td>0.278</td>
<td>0.577</td>
<td>0.18</td>
<td>0.344</td>
<td>0.079</td>
<td>0.292</td>
</tr>
<tr>
<td>MinerU-1.3.11</td>
<td>0.166</td>
<td>0.310</td>
<td>0.0826</td>
<td>0.2000</td>
<td>0.3368</td>
<td>0.6236</td>
<td>0.1613</td>
<td>0.1833</td>
<td>0.0834</td>
<td>0.2316</td>
</tr>
<tr>
<td>Marker-1.2.3</td>
<td>0.336</td>
<td>0.556</td>
<td>0.08</td>
<td>0.315</td>
<td>0.53</td>
<td>0.883</td>
<td>0.619</td>
<td>0.685</td>
<td>0.114</td>
<td>0.34</td>
</tr>
<tr>
<td>Mathpix</td>
<td>0.191</td>
<td>0.365</td>
<td>0.105</td>
<td>0.384</td>
<td>0.306</td>
<td>0.454</td>
<td>0.243</td>
<td>0.32</td>
<td>0.108</td>
<td>0.304</td>
</tr>
<tr>
<td>Docling-2.14.0</td>
<td>0.589</td>
<td>0.909</td>
<td>0.416</td>
<td>0.987</td>
<td>0.999</td>
<td>1</td>
<td>0.627</td>
<td>0.81</td>
<td>0.313</td>
<td>0.837</td>
</tr>
<tr>
<td>Pix2Text-1.1.2.3</td>
<td>0.32</td>
<td>0.528</td>
<td>0.138</td>
<td>0.356</td>
<td><b>0.276</b></td>
<td>0.611</td>
<td>0.584</td>
<td>0.645</td>
<td>0.281</td>
<td>0.499</td>
</tr>
<tr>
<td>Unstructured-0.17.2</td>
<td>0.586</td>
<td>0.716</td>
<td>0.198</td>
<td>0.481</td>
<td>0.999</td>
<td>1</td>
<td>1</td>
<td>0.998</td>
<td>0.145</td>
<td>0.387</td>
</tr>
<tr>
<td>OpenParse-0.7.0</td>
<td>0.646</td>
<td>0.814</td>
<td>0.681</td>
<td>0.974</td>
<td>0.996</td>
<td>1</td>
<td>0.284</td>
<td>0.639</td>
<td>0.595</td>
<td>0.641</td>
</tr>
<tr>
<td rowspan="5">Expert VLMs</td>
<td>GOT-OCR</td>
<td>0.287</td>
<td>0.411</td>
<td>0.189</td>
<td>0.315</td>
<td>0.36</td>
<td>0.528</td>
<td>0.459</td>
<td>0.52</td>
<td>0.141</td>
<td>0.28</td>
</tr>
<tr>
<td>Nougat</td>
<td>0.452</td>
<td>0.973</td>
<td>0.365</td>
<td>0.998</td>
<td>0.488</td>
<td>0.941</td>
<td>0.572</td>
<td>1</td>
<td>0.382</td>
<td>0.954</td>
</tr>
<tr>
<td>Mistral OCR</td>
<td>0.268</td>
<td>0.439</td>
<td>0.072</td>
<td>0.325</td>
<td>0.318</td>
<td>0.495</td>
<td>0.6</td>
<td>0.65</td>
<td>0.083</td>
<td>0.284</td>
</tr>
<tr>
<td>OLMOCR-sglang</td>
<td>0.326</td>
<td>0.469</td>
<td>0.097</td>
<td>0.293</td>
<td>0.455</td>
<td>0.655</td>
<td>0.608</td>
<td>0.652</td>
<td>0.145</td>
<td>0.277</td>
</tr>
<tr>
<td>SmolDocling-256M_transformer</td>
<td>0.493</td>
<td>0.816</td>
<td>0.262</td>
<td>0.838</td>
<td>0.753</td>
<td>0.997</td>
<td>0.729</td>
<td>0.907</td>
<td>0.227</td>
<td>0.522</td>
</tr>
<tr>
<td rowspan="6">General VLMs</td>
<td>Gemini2.0-flash</td>
<td>0.191</td>
<td>0.264</td>
<td>0.091</td>
<td>0.139</td>
<td>0.389</td>
<td>0.584</td>
<td>0.193</td>
<td>0.206</td>
<td>0.092</td>
<td>0.128</td>
</tr>
<tr>
<td>Gemini2.5-Pro</td>
<td>0.148</td>
<td><b>0.212</b></td>
<td><b>0.055</b></td>
<td>0.168</td>
<td>0.356</td>
<td>0.439</td>
<td><b>0.13</b></td>
<td>0.119</td>
<td><b>0.049</b></td>
<td>0.121</td>
</tr>
<tr>
<td>GPT4o</td>
<td>0.233</td>
<td>0.399</td>
<td>0.144</td>
<td>0.409</td>
<td>0.425</td>
<td>0.606</td>
<td>0.234</td>
<td>0.329</td>
<td>0.128</td>
<td>0.251</td>
</tr>
<tr>
<td>Qwen2-VL-72B</td>
<td>0.252</td>
<td>0.327</td>
<td>0.096</td>
<td>0.218</td>
<td>0.404</td>
<td>0.487</td>
<td>0.387</td>
<td>0.408</td>
<td>0.119</td>
<td>0.193</td>
</tr>
<tr>
<td>Qwen2.5-VL-72B</td>
<td>0.214</td>
<td>0.261</td>
<td>0.092</td>
<td>0.18</td>
<td>0.315</td>
<td><b>0.434</b></td>
<td>0.341</td>
<td>0.262</td>
<td>0.106</td>
<td>0.168</td>
</tr>
<tr>
<td>InternVL2-76B</td>
<td>0.44</td>
<td>0.443</td>
<td>0.353</td>
<td>0.29</td>
<td>0.543</td>
<td>0.701</td>
<td>0.547</td>
<td>0.555</td>
<td>0.317</td>
<td>0.228</td>
</tr>
</tbody>
</table>
</div>
以上部分数据出自:
* <a href="https://github.com/opendatalab/OmniDocBench">OmniDocBench</a>
* <a href="https://arxiv.org/abs/2412.07626">OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations</a>
# 三、推理 Benchmark
在不同GPU环境下不同配置的 PP-StructureV3 和 MinerU 对比的性能指标如下。
基本测试环境:
* Paddle 3.0正式版
* PaddleOCR 3.0.0正式版
* MinerU 1.3.10
* CUDA 11.8
* cuDNN 8.9
## 3.1 本地推理
本地推理分别在 V100 和 A100 两种 GPU机器上测试了 6 种不同配置下 PP-StructureV3 的性能测试数据为15个PDF文件共925页包含表格、公式、印章、图表等元素。
下述 PP-StructureV3 配置中OCR 模型详情请见[PP-OCRv5](../PP-OCRv5/PP-OCRv5.md),公式识别模型详情请见[公式识别](../../module_usage/formula_recognition.md),文本检测模块 max_side_limit 设置请见[文本检测](../../module_usage/text_detection.md)。
### NVIDIA Tesla V100 + Intel Xeon Gold 6271C
<table border="1">
<tr>
<td>
方案
</td>
<td colspan="4">
配置
</td>
<td rowspan="2">
平均每页耗时
s
</td>
<td rowspan="2">
平均CPU利用率
%
</td>
<td rowspan="2">
峰值RAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
<td rowspan="2">
平均RAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
<td rowspan="2">
平均GPU利用率
%
</td>
<td rowspan="2">
峰值VRAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
<td rowspan="2">
平均VRAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
</tr>
<tr>
<td rowspan="7">
PP-StructureV3
</td>
<td>
OCR模型
</td>
<td>
公式识别模型
</td>
<td>
是否启用图表识别模块
</td>
<td>
文本检测max_side_limit
</td>
</tr>
<tr>
<td>
Server系列
</td>
<td>
PP-FormulaNet-L
</td>
<td>
</td>
<td>
4096
</td>
<td>
1.77
</td>
<td>
111.4
</td>
<td>
6.7
</td>
<td>
5.2
</td>
<td>
38.9
</td>
<td>
17.0
</td>
<td>
16.5
</td>
</tr>
<tr>
<td>
Server系列
</td>
<td>
PP-FormulaNet-L
</td>
<td>
</td>
<td>
4096
</td>
<td>
4.09
</td>
<td>
105.3
</td>
<td>
5.5
</td>
<td>
4.0
</td>
<td>
24.7
</td>
<td>
17.0
</td>
<td>
16.6
</td>
</tr>
<tr>
<td>
Mobile系列
</td>
<td>
PP-FormulaNet-L
</td>
<td>
</td>
<td>
4096
</td>
<td>
1.56
</td>
<td>
113.7
</td>
<td>
6.6
</td>
<td>
4.9
</td>
<td>
29.1
</td>
<td>
10.7
</td>
<td>
10.6
</td>
</tr>
<tr>
<td>
Server系列
</td>
<td>
PP-FormulaNet-M
</td>
<td>
</td>
<td>
4096
</td>
<td>
1.42
</td>
<td>
112.9
</td>
<td>
6.8
</td>
<td>
5.1
</td>
<td>
38
</td>
<td>
16.0
</td>
<td>
15.5
</td>
</tr>
<tr>
<td>
Mobile系列
</td>
<td>
PP-FormulaNet-M
</td>
<td>
</td>
<td>
4096
</td>
<td>
1.15
</td>
<td>
114.8
</td>
<td>
6.5
</td>
<td>
5.0
</td>
<td>
26.1
</td>
<td>
8.4
</td>
<td>
8.3
</td>
</tr>
<tr>
<td>
Mobile系列
</td>
<td>
PP-FormulaNet-M
</td>
<td>
</td>
<td>
1200
</td>
<td>
0.99
</td>
<td>
113
</td>
<td>
7.0
</td>
<td>
5.6
</td>
<td>
29.2
</td>
<td>
8.6
</td>
<td>
8.5
</td>
</tr>
<tr>
<td>
MinerU
</td>
<td colspan="4">
-
</td>
<td>
1.57
</td>
<td>
142.9
</td>
<td>
13.3
</td>
<td>
11.8
</td>
<td>
43.3
</td>
<td>
31.6
</td>
<td>
9.7
</td>
</tr>
</table>
### NVIDIA A100 + Intel Xeon Platinum 8350C
<table border="1">
<tr>
<td>
方案
</td>
<td colspan="4">
配置
</td>
<td rowspan="2">
平均每页耗时
s
</td>
<td rowspan="2">
平均CPU利用率
%
</td>
<td rowspan="2">
峰值RAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
<td rowspan="2">
平均RAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
<td rowspan="2">
平均GPU利用率
%
</td>
<td rowspan="2">
峰值VRAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
<td rowspan="2">
平均VRAM用量
2025-06-18 18:01:05 +08:00
GB
</td>
</tr>
<tr>
<td rowspan="7">
PP-StructureV3
</td>
<td>
OCR模型
</td>
<td>
公式识别模型
</td>
<td>
是否启用图表识别模块
</td>
<td>
文本检测max_side_limit
</td>
</tr>
<tr>
<td>
Server系列
</td>
<td>
PP-FormulaNet-L
</td>
<td>
</td>
<td>
4096
</td>
<td>
1.12
</td>
<td>
109.8
</td>
<td>
9.2
</td>
<td>
7.8
</td>
<td>
29.8
</td>
<td>
21.8
</td>
<td>
21.1
</td>
</tr>
<tr>
<td>
Server系列
</td>
<td>
PP-FormulaNet-L
</td>
<td>
</td>
<td>
4096
</td>
<td>
2.76
</td>
<td>
103.7
</td>
<td>
9.0
</td>
<td>
7.7
</td>
<td>
24
</td>
<td>
21.8
</td>
<td>
21.1
</td>
</tr>
<tr>
<td>
Mobile系列
</td>
<td>
PP-FormulaNet-L
</td>
<td>
</td>
<td>
4096
</td>
<td>
1.04
</td>
<td>
110.7
</td>
<td>
9.3
</td>
<td>
7.8
</td>
<td>
22
</td>
<td>
12.2
</td>
<td>
12.1
</td>
</tr>
<tr>
<td>
Server系列
</td>
<td>
PP-FormulaNet-M
</td>
<td>
</td>
<td>
4096
</td>
<td>
0.95
</td>
<td>
111.4
</td>
<td>
9.1
</td>
<td>
7.8
</td>
<td>
28.1
</td>
<td>
21.8
</td>
<td>
21.0
</td>
</tr>
<tr>
<td>
Mobile系列
</td>
<td>
PP-FormulaNet-M
</td>
<td>
</td>
<td>
4096
</td>
<td>
0.89
</td>
<td>
112.1
</td>
<td>
9.2
</td>
<td>
7.8
</td>
<td>
18.5
</td>
<td>
11.4
</td>
<td>
11.2
</td>
</tr>
<tr>
<td>
Mobile系列
</td>
<td>
PP-FormulaNet-M
</td>
<td>
</td>
<td>
1200
</td>
<td>
0.64
</td>
<td>
113.5
</td>
<td>
10.2
</td>
<td>
8.5
</td>
<td>
23.7
</td>
<td>
11.4
</td>
<td>
11.2
</td>
</tr>
<tr>
<td>
MinerU
</td>
<td colspan="4">
-
</td>
<td>
1.06
</td>
<td>
168.3
</td>
<td>
18.3
</td>
<td>
16.8
</td>
<td>
27.5
</td>
<td>
76.9
</td>
<td>
14.8
</td>
</tr>
</table>
## 3.2 服务化部署
服务化部署测试基于 NVIDIA A100 + Intel Xeon Platinum 8350C 环境,测试数据为 1500 张图像,包含表格、公式、印章、图表等元素。
<table>
<tbody>
<tr>
<td>实例数</td>
<td>并发请求数</td>
<td>吞吐</td>
<td>平均时延s</td>
<td>成功请求数/总请求数</td>
</tr>
<tr">
<td>4卡 ✖️ 1实例/卡</td>
<td>4</td>
<td>1.69</td>
<td>2.36</td>
<td>100%</td>
</tr>
<tr">
<td>4卡 ✖️ 4实例/卡</td>
<td>16</td>
<td>4.05</td>
<td>3.87</td>
<td>100%</td>
</tr>
</tbody>
</table>
2025-08-20 15:05:39 +08:00
## 3.3 产线基准测试数据
<details>
<summary>点击展开/折叠表格</summary>
<table border="1">
<tr><th>流水线配置</th><th>硬件</th><th>平均推理时间 (s)</th><th>峰值CPU利用率 (%)</th><th>平均CPU利用率 (%)</th><th>峰值主机内存 (MB)</th><th>平均主机内存 (MB)</th><th>峰值GPU利用率 (%)</th><th>平均GPU利用率 (%)</th><th>峰值设备内存 (MB)</th><th>平均设备内存 (MB)</th></tr>
<tr>
<td rowspan="5">PP_StructureV3-default</td>
<td>Intel 8350C + A100</td>
<td>1.38</td>
<td>1384.60</td>
<td>113.26</td>
<td>5781.59</td>
<td>3431.21</td>
<td>100</td>
<td>32.79</td>
<td>37370.00</td>
<td>34165.68</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>2.38</td>
<td>608.70</td>
<td>109.96</td>
<td>6388.91</td>
<td>3737.19</td>
<td>100</td>
<td>39.08</td>
<td>26824.00</td>
<td>24581.61</td>
</tr>
<tr>
<td>Intel 8563C + H20</td>
<td>1.36</td>
<td>744.30</td>
<td>112.82</td>
<td>6199.01</td>
<td>3865.78</td>
<td>100</td>
<td>43.81</td>
<td>35132.00</td>
<td>32077.12</td>
</tr>
<tr>
<td>Intel 8350C + A10</td>
<td>1.74</td>
<td>418.50</td>
<td>105.96</td>
<td>6138.25</td>
<td>3503.41</td>
<td>100</td>
<td>48.54</td>
<td>18536.00</td>
<td>18353.93</td>
</tr>
<tr>
<td>Intel 6271C + T4</td>
<td>3.70</td>
<td>434.40</td>
<td>105.45</td>
<td>6865.87</td>
<td>3595.68</td>
<td>100</td>
<td>71.92</td>
<td>13970.00</td>
<td>12668.58</td>
</tr>
<tr>
<td rowspan="3">PP_StructureV3-pp</td>
<td>Intel 8350C + A100</td>
<td>3.50</td>
<td>679.30</td>
<td>105.96</td>
<td>13850.20</td>
<td>5146.50</td>
<td>100</td>
<td>14.01</td>
<td>37656.00</td>
<td>34716.95</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>5.03</td>
<td>494.20</td>
<td>105.63</td>
<td>13542.94</td>
<td>4833.55</td>
<td>100</td>
<td>20.36</td>
<td>29402.00</td>
<td>26607.92</td>
</tr>
<tr>
<td>Intel 8563C + H20</td>
<td>3.17</td>
<td>481.50</td>
<td>105.13</td>
<td>14179.97</td>
<td>5608.80</td>
<td>100</td>
<td>19.35</td>
<td>35454.00</td>
<td>32512.19</td>
</tr>
<tr>
<td rowspan="2">PP_StructureV3-full</td>
<td>Intel 8350C + A100</td>
<td>8.92</td>
<td>697.30</td>
<td>102.88</td>
<td>13777.07</td>
<td>4573.65</td>
<td>100</td>
<td>18.39</td>
<td>38776.00</td>
<td>37554.09</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>13.12</td>
<td>437.40</td>
<td>102.36</td>
<td>13974.00</td>
<td>4484.00</td>
<td>100</td>
<td>17.50</td>
<td>29878.00</td>
<td>28733.59</td>
</tr>
<tr>
<td rowspan="5">PP_StructureV3-seal</td>
<td>Intel 8350C + A100</td>
<td>1.39</td>
<td>747.50</td>
<td>112.55</td>
<td>5788.79</td>
<td>3742.03</td>
<td>100</td>
<td>33.81</td>
<td>38966.00</td>
<td>35832.44</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>2.44</td>
<td>630.10</td>
<td>110.18</td>
<td>6343.39</td>
<td>3725.98</td>
<td>100</td>
<td>42.23</td>
<td>28078.00</td>
<td>25834.70</td>
</tr>
<tr>
<td>Intel 8563C + H20</td>
<td>1.40</td>
<td>792.20</td>
<td>113.63</td>
<td>6673.60</td>
<td>4417.34</td>
<td>100</td>
<td>46.33</td>
<td>35530.00</td>
<td>32516.87</td>
</tr>
<tr>
<td>Intel 8350C + A10</td>
<td>1.75</td>
<td>422.40</td>
<td>106.08</td>
<td>6068.87</td>
<td>3973.49</td>
<td>100</td>
<td>50.12</td>
<td>19630.00</td>
<td>18374.37</td>
</tr>
<tr>
<td>Intel 6271C + T4</td>
<td>3.76</td>
<td>400.30</td>
<td>105.10</td>
<td>6296.28</td>
<td>3651.42</td>
<td>100</td>
<td>72.57</td>
<td>14304.00</td>
<td>13268.36</td>
</tr>
<tr>
<td rowspan="4">PP_StructureV3-chart</td>
<td>Intel 8350C + A100</td>
<td>7.70</td>
<td>746.80</td>
<td>102.69</td>
<td>6355.58</td>
<td>4006.48</td>
<td>100</td>
<td>22.38</td>
<td>37380.00</td>
<td>36730.73</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>10.58</td>
<td>599.20</td>
<td>102.51</td>
<td>5754.14</td>
<td>3333.78</td>
<td>100</td>
<td>21.99</td>
<td>26820.00</td>
<td>26253.70</td>
</tr>
<tr>
<td>Intel 8350C + A10</td>
<td>8.03</td>
<td>413.30</td>
<td>101.31</td>
<td>6473.29</td>
<td>3689.84</td>
<td>100</td>
<td>26.19</td>
<td>18540.00</td>
<td>18494.69</td>
</tr>
<tr>
<td>Intel 6271C + T4</td>
<td>11.69</td>
<td>460.90</td>
<td>101.85</td>
<td>6503.12</td>
<td>3524.06</td>
<td>100</td>
<td>46.81</td>
<td>13966.00</td>
<td>12481.94</td>
</tr>
<tr>
<td rowspan="5">PP_StructureV3-notable</td>
<td>Intel 8350C + A100</td>
<td>1.24</td>
<td>738.30</td>
<td>110.45</td>
<td>5638.16</td>
<td>3278.30</td>
<td>100</td>
<td>35.32</td>
<td>30320.00</td>
<td>27026.17</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>2.24</td>
<td>452.40</td>
<td>107.79</td>
<td>5579.15</td>
<td>3635.95</td>
<td>100</td>
<td>43.00</td>
<td>23098.00</td>
<td>20684.43</td>
</tr>
<tr>
<td>Intel 8563C + H20</td>
<td>1.18</td>
<td>989.00</td>
<td>107.71</td>
<td>6041.76</td>
<td>4024.76</td>
<td>100</td>
<td>50.67</td>
<td>33780.00</td>
<td>29733.15</td>
</tr>
<tr>
<td>Intel 8350C + A10</td>
<td>1.58</td>
<td>225.00</td>
<td>102.56</td>
<td>5518.10</td>
<td>3333.08</td>
<td>100</td>
<td>49.90</td>
<td>21532.00</td>
<td>18567.99</td>
</tr>
<tr>
<td>Intel 6271C + T4</td>
<td>3.40</td>
<td>413.30</td>
<td>103.58</td>
<td>5874.88</td>
<td>3662.49</td>
<td>100</td>
<td>76.82</td>
<td>13764.00</td>
<td>11890.62</td>
</tr>
<tr>
<td rowspan="7">PP_StructureV3-noformula</td>
<td>Intel 6271C</td>
<td>7.85</td>
<td>1172.50</td>
<td>964.70</td>
<td>17739.00</td>
<td>11101.02</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel 8350C</td>
<td>8.83</td>
<td>1053.50</td>
<td>970.64</td>
<td>15463.48</td>
<td>9408.19</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel 8350C + A100</td>
<td>0.84</td>
<td>788.60</td>
<td>124.25</td>
<td>6246.39</td>
<td>3674.32</td>
<td>100</td>
<td>30.57</td>
<td>40084.00</td>
<td>37358.45</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>1.42</td>
<td>606.20</td>
<td>115.53</td>
<td>7015.57</td>
<td>3707.03</td>
<td>100</td>
<td>35.63</td>
<td>29540.00</td>
<td>27620.28</td>
</tr>
<tr>
<td>Intel 8563C + H20</td>
<td>0.87</td>
<td>644.10</td>
<td>119.23</td>
<td>6895.76</td>
<td>4222.85</td>
<td>100</td>
<td>50.00</td>
<td>36878.00</td>
<td>34104.59</td>
</tr>
<tr>
<td>Intel 8350C + A10</td>
<td>1.03</td>
<td>377.50</td>
<td>106.87</td>
<td>5819.88</td>
<td>3830.19</td>
<td>100</td>
<td>42.87</td>
<td>19340.00</td>
<td>17550.94</td>
</tr>
<tr>
<td>Intel 6271C + T4</td>
<td>2.02</td>
<td>430.20</td>
<td>109.21</td>
<td>6600.62</td>
<td>3824.18</td>
<td>100</td>
<td>65.75</td>
<td>14332.00</td>
<td>12712.18</td>
</tr>
<tr>
<td rowspan="9">PP_StructureV3-lightweight</td>
<td>Intel 6271C</td>
<td>4.36</td>
<td>1189.70</td>
<td>995.78</td>
<td>14000.50</td>
<td>9374.97</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel 8350C</td>
<td>3.74</td>
<td>1049.60</td>
<td>967.77</td>
<td>12960.96</td>
<td>7644.25</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hygon 7490 + P800</td>
<td>0.86</td>
<td>572.20</td>
<td>120.84</td>
<td>8290.49</td>
<td>3569.44</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel 8350C + A100</td>
<td>0.61</td>
<td>823.40</td>
<td>126.25</td>
<td>9258.22</td>
<td>3776.63</td>
<td>52</td>
<td>18.95</td>
<td>7456.00</td>
<td>7131.95</td>
</tr>
<tr>
<td>Intel 6271C + V100</td>
<td>1.07</td>
<td>686.80</td>
<td>116.70</td>
<td>9381.75</td>
<td>4126.28</td>
<td>58</td>
<td>22.92</td>
<td>8450.00</td>
<td>8083.30</td>
</tr>
<tr>
<td>Intel 8563C + H20</td>
<td>0.46</td>
<td>999.00</td>
<td>122.21</td>
<td>9734.78</td>
<td>4516.40</td>
<td>61</td>
<td>24.41</td>
<td>7524.00</td>
<td>7167.52</td>
</tr>
<tr>
<td>Intel 8350C + A10</td>
<td>0.70</td>
<td>355.40</td>
<td>111.51</td>
<td>9415.45</td>
<td>4094.06</td>
<td>89</td>
<td>30.85</td>
<td>7248.00</td>
<td>6927.58</td>
</tr>
<tr>
<td>M4</td>
<td>12.22</td>
<td>223.60</td>
<td>107.35</td>
<td>9531.22</td>
<td>7884.61</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel 6271C + T4</td>
<td>1.13</td>
<td>461.40</td>
<td>112.16</td>
<td>7923.09</td>
<td>3837.31</td>
<td>85</td>
<td>41.67</td>
<td>8218.00</td>
<td>7902.04</td>
</tr>
</table>
<table border="1">
<tr><th>Pipeline configuration</th><th>description</th></tr>
<tr>
<td>PP_StructureV3-default</td>
<td>默认配置</td>
</tr>
<tr>
<td>PP_StructureV3-pp</td>
<td>默认配置基础上,开启文档图像预处理</td>
</tr>
<tr>
<td>PP_StructureV3-full</td>
<td>默认配置基础上,开启文档图像预处理和图表解析</td>
</tr>
<tr>
<td>PP_StructureV3-seal</td>
<td>默认配置基础上,开启印章文本识别</td>
</tr>
<tr>
<td>PP_StructureV3-chart</td>
<td>默认配置基础上,开启文档图表解析</td>
</tr>
<tr>
<td>PP_StructureV3-notable</td>
<td>默认配置基础上,关闭表格识别</td>
</tr>
<tr>
<td>PP_StructureV3-noformula</td>
<td>默认配置基础上,关闭公式识别</td>
</tr>
<tr>
<td>PP_StructureV3-lightweight</td>
<td>默认配置基础上,将所有任务模型都换成最轻量版本</td>
</tr>
</table>
</details>
* 测试环境:
* PaddlePaddle 3.1.0、CUDA 11.8、cuDNN 8.9
* PaddleX @ develop (f1eb28e23cfa54ce3e9234d2e61fcb87c93cf407)
* Docker image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddle:3.1.0-gpu-cuda11.8-cudnn8.9
* 测试数据:
* 测试数据包含表格、印章、公式、图表的280张图像。
* 测试策略:
* 使用 20 个样本进行预热,然后对整个数据集重复 1 次以进行速度性能测试。
* 备注:
* 由于我们没有收集NPU和XPU的设备内存数据因此表中相应位置的数据标记为N/A。
# 四、PP-StructureV3 Demo示例
<div align="center">
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/paddleocr/PP-StructureV3/algorithm_ppstructurev3_demo.png" width="600"/>
</div>
<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex%2FPaddleX3.0%2Fdoc_images%2FPP-StructureV3%2Falgorithm_ppstructurev3_demo.pdf">更多示例</a>
# 五、使用方法和常见问题
**Q:默认模型是什么配置,如果需要更高精度、更快速度、或者更小显存,应该调哪些参数或者更换哪些模型,对结果影响大概有多大?**
**A:** 默认模型均采用了了各个模块参数量最大的模型3.3 章节中展示了不同的模型选择对于显存和推理速度的影响。可以根据设备情况和样本难易程度选择合适的模型。另外,在 Python API 或 CLI 设置 device 为<设备类型>:<设备编号1>,<设备编号2>...例如gpu:0,1,2,3可实现多卡并行推理。如果内置的多卡并行推理功能提速效果仍不满足预期可参考多进程并行推理示例代码结合具体场景进行进一步优化[多进程并行推理](https://www.paddleocr.ai/latest/version3.x/pipeline_usage/instructions/parallel_inference.html)。
---
**Q: PP-StructureV3 是否可以在 CPU 上运行?**
**A:** PP-StructureV3 虽然更推荐在 GPU 环境下进行推理,但也支持在 CPU 上运行。得益于多种配置选项及对轻量级模型的充分优化,在仅有 CPU 环境时,用户可以参考 3.3 节选择轻量化配置进行推理。例如,在 Intel 8350C CPU 上,每张图片的推理时间约为 3.74 秒。
---
**Q: 如何将 PP-StructureV3 集成到自己的项目中?**
**A:**
- 对于 Python 项目,可以直接使用 PaddleOCR 的 Python API 完成集成。
- 对于其他编程语言建议通过服务化部署方式集成。PaddleOCR 支持包括 C++、C#、Java、Go、PHP 等多种语言的客户端调用方式,具体集成方法可参考 [官方文档](https://www.paddleocr.ai/latest/version3.x/pipeline_usage/PP-StructureV3.html#3)。
- 如果需要与大模型进行交互PaddleOCR 还提供了 MCP 服务,详细说明可参考 [MCP 服务器](https://www.paddleocr.ai/latest/version3.x/deployment/mcp_server.html)。
---
**Q:服务化部署可以并发处理请求吗?**
**A:** 对于基础服务化部署方案,服务同一时间只处理一个请求,该方案主要用于快速验证、打通开发链路,或者用在不需要并发请求的场景;对于高稳定性服务化部署方案,服务默认在同一时间只处理一个请求,但用户可以参考服务化部署指南,通过调整配置实现水平扩展,以使服务同时处理多个请求。
---
**Q: 服务化部署如何降低时延、提升吞吐?**
**A:** PaddleOCR 提供的2种服务化部署方案无论使用哪一种方案都可以通过启用高性能推理插件提升模型推理速度从而降低处理时延。此外对于高稳定性服务化部署方案通过调整服务配置设置多个实例也可以充分利用部署机器的资源有效提升吞吐。高稳定性服务化部署方案调整配置可以参考[文档](https://paddlepaddle.github.io/PaddleX/latest/pipeline_deploy/serving.html#22)。