| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  | # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #     http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							| 
									
										
										
										
											2021-05-20 10:41:15 +00:00
										 |  |  | from paddle_serving_server.web_service import WebService, Op | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import logging | 
					
						
							|  |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2022-04-08 03:25:08 +00:00
										 |  |  | import copy | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  | import cv2 | 
					
						
							|  |  |  | import base64 | 
					
						
							|  |  |  | # from paddle_serving_app.reader import OCRReader | 
					
						
							| 
									
										
										
										
											2022-06-08 14:01:21 +08:00
										 |  |  | from ocr_reader import OCRReader, DetResizeForTest, ArgsParser | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  | from paddle_serving_app.reader import Sequential, ResizeByFactor | 
					
						
							|  |  |  | from paddle_serving_app.reader import Div, Normalize, Transpose | 
					
						
							|  |  |  | from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | _LOGGER = logging.getLogger() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class DetOp(Op): | 
					
						
							|  |  |  |     def init_op(self): | 
					
						
							|  |  |  |         self.det_preprocess = Sequential([ | 
					
						
							|  |  |  |             DetResizeForTest(), Div(255), | 
					
						
							|  |  |  |             Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( | 
					
						
							|  |  |  |                 (2, 0, 1)) | 
					
						
							|  |  |  |         ]) | 
					
						
							|  |  |  |         self.filter_func = FilterBoxes(10, 10) | 
					
						
							|  |  |  |         self.post_func = DBPostProcess({ | 
					
						
							|  |  |  |             "thresh": 0.3, | 
					
						
							| 
									
										
										
										
											2022-04-08 03:25:08 +00:00
										 |  |  |             "box_thresh": 0.6, | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |             "max_candidates": 1000, | 
					
						
							|  |  |  |             "unclip_ratio": 1.5, | 
					
						
							|  |  |  |             "min_size": 3 | 
					
						
							|  |  |  |         }) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def preprocess(self, input_dicts, data_id, log_id): | 
					
						
							|  |  |  |         (_, input_dict), = input_dicts.items() | 
					
						
							|  |  |  |         data = base64.b64decode(input_dict["image"].encode('utf8')) | 
					
						
							| 
									
										
										
										
											2021-05-12 20:19:40 +08:00
										 |  |  |         self.raw_im = data | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |         data = np.fromstring(data, np.uint8) | 
					
						
							|  |  |  |         # Note: class variables(self.var) can only be used in process op mode | 
					
						
							|  |  |  |         im = cv2.imdecode(data, cv2.IMREAD_COLOR) | 
					
						
							|  |  |  |         self.ori_h, self.ori_w, _ = im.shape | 
					
						
							| 
									
										
										
										
											2021-05-12 20:19:40 +08:00
										 |  |  |         det_img = self.det_preprocess(im) | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |         _, self.new_h, self.new_w = det_img.shape | 
					
						
							|  |  |  |         return {"x": det_img[np.newaxis, :].copy()}, False, None, "" | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-15 10:05:54 +00:00
										 |  |  |     def postprocess(self, input_dicts, fetch_dict, data_id, log_id): | 
					
						
							| 
									
										
										
										
											2022-05-07 12:09:02 +08:00
										 |  |  |         det_out = list(fetch_dict.values())[0] | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |         ratio_list = [ | 
					
						
							|  |  |  |             float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  |         dt_boxes_list = self.post_func(det_out, [ratio_list]) | 
					
						
							|  |  |  |         dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w]) | 
					
						
							| 
									
										
										
										
											2021-05-12 20:19:40 +08:00
										 |  |  |         out_dict = {"dt_boxes": dt_boxes, "image": self.raw_im} | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |         return out_dict, None, "" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class RecOp(Op): | 
					
						
							|  |  |  |     def init_op(self): | 
					
						
							|  |  |  |         self.ocr_reader = OCRReader( | 
					
						
							|  |  |  |             char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.get_rotate_crop_image = GetRotateCropImage() | 
					
						
							|  |  |  |         self.sorted_boxes = SortedBoxes() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def preprocess(self, input_dicts, data_id, log_id): | 
					
						
							|  |  |  |         (_, input_dict), = input_dicts.items() | 
					
						
							| 
									
										
										
										
											2021-05-12 20:19:40 +08:00
										 |  |  |         raw_im = input_dict["image"] | 
					
						
							|  |  |  |         data = np.frombuffer(raw_im, np.uint8) | 
					
						
							|  |  |  |         im = cv2.imdecode(data, cv2.IMREAD_COLOR) | 
					
						
							| 
									
										
										
										
											2022-04-08 03:25:08 +00:00
										 |  |  |         self.dt_list = input_dict["dt_boxes"] | 
					
						
							|  |  |  |         self.dt_list = self.sorted_boxes(self.dt_list) | 
					
						
							|  |  |  |         # deepcopy to save origin dt_boxes | 
					
						
							|  |  |  |         dt_boxes = copy.deepcopy(self.dt_list) | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |         feed_list = [] | 
					
						
							|  |  |  |         img_list = [] | 
					
						
							| 
									
										
										
										
											2022-06-08 14:01:21 +08:00
										 |  |  |         max_wh_ratio = 320 / 48. | 
					
						
							| 
									
										
										
										
											2021-05-12 06:42:15 +00:00
										 |  |  |         ## Many mini-batchs, the type of feed_data is list. | 
					
						
							|  |  |  |         max_batch_size = 6  # len(dt_boxes) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # If max_batch_size is 0, skipping predict stage | 
					
						
							|  |  |  |         if max_batch_size == 0: | 
					
						
							|  |  |  |             return {}, True, None, "" | 
					
						
							|  |  |  |         boxes_size = len(dt_boxes) | 
					
						
							|  |  |  |         batch_size = boxes_size // max_batch_size | 
					
						
							|  |  |  |         rem = boxes_size % max_batch_size | 
					
						
							|  |  |  |         for bt_idx in range(0, batch_size + 1): | 
					
						
							|  |  |  |             imgs = None | 
					
						
							|  |  |  |             boxes_num_in_one_batch = 0 | 
					
						
							|  |  |  |             if bt_idx == batch_size: | 
					
						
							|  |  |  |                 if rem == 0: | 
					
						
							|  |  |  |                     continue | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     boxes_num_in_one_batch = rem | 
					
						
							|  |  |  |             elif bt_idx < batch_size: | 
					
						
							|  |  |  |                 boxes_num_in_one_batch = max_batch_size | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 _LOGGER.error("batch_size error, bt_idx={}, batch_size={}". | 
					
						
							|  |  |  |                               format(bt_idx, batch_size)) | 
					
						
							|  |  |  |                 break | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             start = bt_idx * max_batch_size | 
					
						
							|  |  |  |             end = start + boxes_num_in_one_batch | 
					
						
							|  |  |  |             img_list = [] | 
					
						
							|  |  |  |             for box_idx in range(start, end): | 
					
						
							|  |  |  |                 boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx]) | 
					
						
							|  |  |  |                 img_list.append(boximg) | 
					
						
							|  |  |  |                 h, w = boximg.shape[0:2] | 
					
						
							|  |  |  |                 wh_ratio = w * 1.0 / h | 
					
						
							|  |  |  |                 max_wh_ratio = max(max_wh_ratio, wh_ratio) | 
					
						
							|  |  |  |             _, w, h = self.ocr_reader.resize_norm_img(img_list[0], | 
					
						
							|  |  |  |                                                       max_wh_ratio).shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32') | 
					
						
							|  |  |  |             for id, img in enumerate(img_list): | 
					
						
							|  |  |  |                 norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) | 
					
						
							|  |  |  |                 imgs[id] = norm_img | 
					
						
							|  |  |  |             feed = {"x": imgs.copy()} | 
					
						
							|  |  |  |             feed_list.append(feed) | 
					
						
							|  |  |  |         return feed_list, False, None, "" | 
					
						
							| 
									
										
										
										
											2021-05-12 20:19:40 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-15 10:05:54 +00:00
										 |  |  |     def postprocess(self, input_dicts, fetch_data, data_id, log_id): | 
					
						
							| 
									
										
										
										
											2022-04-08 03:25:08 +00:00
										 |  |  |         rec_list = [] | 
					
						
							|  |  |  |         dt_num = len(self.dt_list) | 
					
						
							| 
									
										
										
										
											2021-05-12 06:42:15 +00:00
										 |  |  |         if isinstance(fetch_data, dict): | 
					
						
							|  |  |  |             if len(fetch_data) > 0: | 
					
						
							|  |  |  |                 rec_batch_res = self.ocr_reader.postprocess( | 
					
						
							|  |  |  |                     fetch_data, with_score=True) | 
					
						
							|  |  |  |                 for res in rec_batch_res: | 
					
						
							| 
									
										
										
										
											2022-04-08 07:34:53 +00:00
										 |  |  |                     rec_list.append(res) | 
					
						
							| 
									
										
										
										
											2021-05-12 06:42:15 +00:00
										 |  |  |         elif isinstance(fetch_data, list): | 
					
						
							|  |  |  |             for one_batch in fetch_data: | 
					
						
							|  |  |  |                 one_batch_res = self.ocr_reader.postprocess( | 
					
						
							|  |  |  |                     one_batch, with_score=True) | 
					
						
							|  |  |  |                 for res in one_batch_res: | 
					
						
							| 
									
										
										
										
											2022-04-08 07:34:53 +00:00
										 |  |  |                     rec_list.append(res) | 
					
						
							| 
									
										
										
										
											2022-04-08 03:25:08 +00:00
										 |  |  |         result_list = [] | 
					
						
							|  |  |  |         for i in range(dt_num): | 
					
						
							|  |  |  |             text = rec_list[i] | 
					
						
							|  |  |  |             dt_box = self.dt_list[i] | 
					
						
							| 
									
										
										
										
											2022-06-01 21:09:58 +08:00
										 |  |  |             if text[1] >= 0.5: | 
					
						
							|  |  |  |                 result_list.append([text, dt_box.tolist()]) | 
					
						
							| 
									
										
										
										
											2022-04-08 03:25:08 +00:00
										 |  |  |         res = {"result": str(result_list)} | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  |         return res, None, "" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class OcrService(WebService): | 
					
						
							|  |  |  |     def get_pipeline_response(self, read_op): | 
					
						
							|  |  |  |         det_op = DetOp(name="det", input_ops=[read_op]) | 
					
						
							|  |  |  |         rec_op = RecOp(name="rec", input_ops=[det_op]) | 
					
						
							|  |  |  |         return rec_op | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | uci_service = OcrService(name="ocr") | 
					
						
							| 
									
										
										
										
											2022-06-08 14:01:21 +08:00
										 |  |  | FLAGS = ArgsParser().parse_args() | 
					
						
							|  |  |  | uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict) | 
					
						
							| 
									
										
										
										
											2021-03-22 16:15:02 +08:00
										 |  |  | uci_service.run_service() |