| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | # RARE
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | - [1. 算法简介](#1) | 
					
						
							|  |  |  |  | - [2. 环境配置](#2) | 
					
						
							|  |  |  |  | - [3. 模型训练、评估、预测](#3) | 
					
						
							|  |  |  |  |     - [3.1 训练](#3-1) | 
					
						
							|  |  |  |  |     - [3.2 评估](#3-2) | 
					
						
							|  |  |  |  |     - [3.3 预测](#3-3) | 
					
						
							|  |  |  |  | - [4. 推理部署](#4) | 
					
						
							|  |  |  |  |     - [4.1 Python推理](#4-1) | 
					
						
							|  |  |  |  |     - [4.2 C++推理](#4-2) | 
					
						
							|  |  |  |  |     - [4.3 Serving服务化部署](#4-3) | 
					
						
							|  |  |  |  |     - [4.4 更多推理部署](#4-4) | 
					
						
							|  |  |  |  | - [5. FAQ](#5) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="1"></a> | 
					
						
							|  |  |  |  | ## 1. 算法简介
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 论文信息: | 
					
						
							|  |  |  |  | > [Robust Scene Text Recognition with Automatic Rectification](https://arxiv.org/abs/1603.03915v2)
 | 
					
						
							|  |  |  |  | > Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, Xiang Bai∗
 | 
					
						
							|  |  |  |  | > CVPR, 2016
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | |模型|骨干网络|配置文件|Avg Accuracy|下载链接| | 
					
						
							|  |  |  |  | | --- | --- | --- | --- | --- | | 
					
						
							| 
									
										
										
										
											2022-10-24 04:14:51 +00:00
										 |  |  |  | |RARE|Resnet34_vd|[configs/rec/rec_r34_vd_tps_bilstm_att.yml](../../configs/rec/rec_r34_vd_tps_bilstm_att.yml)|83.60%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)| | 
					
						
							|  |  |  |  | |RARE|MobileNetV3|[configs/rec/rec_mv3_tps_bilstm_att.yml](../../configs/rec/rec_mv3_tps_bilstm_att.yml)|82.50%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)| | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="2"></a> | 
					
						
							|  |  |  |  | ## 2. 环境配置
 | 
					
						
							|  |  |  |  | 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="3"></a> | 
					
						
							|  |  |  |  | ## 3. 模型训练、评估、预测
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。以基于Resnet34_vd骨干网络为例: | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-28 12:39:38 +00:00
										 |  |  |  | <a name="3-1"></a> | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | ### 3.1 训练
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | #单卡训练(训练周期长,不建议)
 | 
					
						
							|  |  |  |  | python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml | 
					
						
							|  |  |  |  | #多卡训练,通过--gpus参数指定卡号
 | 
					
						
							|  |  |  |  | python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-29 04:04:32 +00:00
										 |  |  |  | <a name="3-2"></a> | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | ### 3.2 评估
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							| 
									
										
										
										
											2022-04-28 12:39:38 +00:00
										 |  |  |  | # GPU评估, Global.pretrained_model为待评估模型
 | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-29 04:04:32 +00:00
										 |  |  |  | <a name="3-3"></a> | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | ### 3.3 预测
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4"></a> | 
					
						
							|  |  |  |  | ## 4. 推理部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-1"></a> | 
					
						
							|  |  |  |  | ### 4.1 Python推理
 | 
					
						
							|  |  |  |  | 首先将RARE文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,在MJSynth和SynthText两个文字识别数据集训练得到的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar) ),可以使用如下命令进行转换: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```shell | 
					
						
							|  |  |  |  | python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model=./rec_r34_vd_tps_bilstm_att_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/rec_rare | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | RARE文本识别模型推理,可以执行如下命令: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```shell | 
					
						
							| 
									
										
										
										
											2022-04-29 03:48:06 +00:00
										 |  |  |  | python3 tools/infer/predict_rec.py --image_dir="doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_rare/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt" | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | ``` | 
					
						
							| 
									
										
										
										
											2022-04-29 03:48:06 +00:00
										 |  |  |  | 推理结果如下所示: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | Predicts of doc/imgs_words/en/word_1.png:('joint ', 0.9999969601631165) | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-28 12:26:32 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-2"></a> | 
					
						
							|  |  |  |  | ### 4.2 C++推理
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 暂不支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-3"></a> | 
					
						
							|  |  |  |  | ### 4.3 Serving服务化部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 暂不支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-4"></a> | 
					
						
							|  |  |  |  | ### 4.4 更多推理部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | RARE模型还支持以下推理部署方式: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | - Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="5"></a> | 
					
						
							|  |  |  |  | ## 5. FAQ
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ## 引用
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```bibtex | 
					
						
							|  |  |  |  | @inproceedings{2016Robust, | 
					
						
							|  |  |  |  |   title={Robust Scene Text Recognition with Automatic Rectification}, | 
					
						
							|  |  |  |  |   author={ Shi, B.  and  Wang, X.  and  Lyu, P.  and  Cong, Y.  and  Xiang, B. }, | 
					
						
							|  |  |  |  |   booktitle={2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | 
					
						
							|  |  |  |  |   year={2016}, | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | ``` |