| 
									
										
										
										
											2022-05-22 13:16:52 +08:00
										 |  |  |  | # RobustScanner
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | - [1. 算法简介](#1) | 
					
						
							|  |  |  |  | - [2. 环境配置](#2) | 
					
						
							|  |  |  |  | - [3. 模型训练、评估、预测](#3) | 
					
						
							|  |  |  |  |     - [3.1 训练](#3-1) | 
					
						
							|  |  |  |  |     - [3.2 评估](#3-2) | 
					
						
							|  |  |  |  |     - [3.3 预测](#3-3) | 
					
						
							|  |  |  |  | - [4. 推理部署](#4) | 
					
						
							|  |  |  |  |     - [4.1 Python推理](#4-1) | 
					
						
							|  |  |  |  |     - [4.2 C++推理](#4-2) | 
					
						
							|  |  |  |  |     - [4.3 Serving服务化部署](#4-3) | 
					
						
							|  |  |  |  |     - [4.4 更多推理部署](#4-4) | 
					
						
							|  |  |  |  | - [5. FAQ](#5) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="1"></a> | 
					
						
							|  |  |  |  | ## 1. 算法简介
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 论文信息: | 
					
						
							|  |  |  |  | > [RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition](https://arxiv.org/pdf/2007.07542.pdf)
 | 
					
						
							|  |  |  |  | > Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne
 | 
					
						
							|  |  |  |  | Zhang | 
					
						
							|  |  |  |  | > ECCV, 2020
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 使用MJSynth和SynthText两个合成文字识别数据集训练,在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | |模型|骨干网络|配置文件|Acc|下载链接| | 
					
						
							|  |  |  |  | | --- | --- | --- | --- | --- | | 
					
						
							| 
									
										
										
										
											2022-09-29 06:52:10 +00:00
										 |  |  |  | |RobustScanner|ResNet31|[rec_r31_robustscanner.yml](../../configs/rec/rec_r31_robustscanner.yml)|87.77%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_r31_robustscanner.tar)| | 
					
						
							| 
									
										
										
										
											2022-05-22 13:16:52 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 注:除了使用MJSynth和SynthText两个文字识别数据集外,还加入了[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg)数据(提取码:627x),和部分真实数据,具体数据细节可以参考论文。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="2"></a> | 
					
						
							|  |  |  |  | ## 2. 环境配置
 | 
					
						
							|  |  |  |  | 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="3"></a> | 
					
						
							|  |  |  |  | ## 3. 模型训练、评估、预测
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 训练 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 具体地,在完成数据准备后,便可以启动训练,训练命令如下: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | #单卡训练(训练周期长,不建议)
 | 
					
						
							|  |  |  |  | python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #多卡训练,通过--gpus参数指定卡号
 | 
					
						
							|  |  |  |  | python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r31_robustscanner.yml | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 评估 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | # GPU 评估, Global.pretrained_model 为待测权重
 | 
					
						
							|  |  |  |  | python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 预测: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | # 预测使用的配置文件必须与训练一致
 | 
					
						
							|  |  |  |  | python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4"></a> | 
					
						
							|  |  |  |  | ## 4. 推理部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-1"></a> | 
					
						
							|  |  |  |  | ### 4.1 Python推理
 | 
					
						
							| 
									
										
										
										
											2022-06-12 12:25:34 +08:00
										 |  |  |  | 首先将RobustScanner文本识别训练过程中保存的模型,转换成inference model。可以使用如下命令进行转换: | 
					
						
							| 
									
										
										
										
											2022-05-22 13:16:52 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.save_inference_dir=./inference/rec_r31_robustscanner | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | RobustScanner文本识别模型推理,可以执行如下命令: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-2"></a> | 
					
						
							|  |  |  |  | ### 4.2 C++推理
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-12 12:25:34 +08:00
										 |  |  |  | 由于C++预处理后处理还未支持RobustScanner,所以暂未支持 | 
					
						
							| 
									
										
										
										
											2022-05-22 13:16:52 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-3"></a> | 
					
						
							|  |  |  |  | ### 4.3 Serving服务化部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 暂不支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-4"></a> | 
					
						
							|  |  |  |  | ### 4.4 更多推理部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 暂不支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="5"></a> | 
					
						
							|  |  |  |  | ## 5. FAQ
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ## 引用
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```bibtex | 
					
						
							| 
									
										
										
										
											2022-06-12 12:25:34 +08:00
										 |  |  |  | @article{2020RobustScanner, | 
					
						
							|  |  |  |  |   title={RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition}, | 
					
						
							|  |  |  |  |   author={Xiaoyu Yue and Zhanghui Kuang and Chenhao Lin and Hongbin Sun and Wayne Zhang}, | 
					
						
							|  |  |  |  |   journal={ECCV2020}, | 
					
						
							|  |  |  |  |   year={2020}, | 
					
						
							| 
									
										
										
										
											2022-05-22 13:16:52 +08:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | ``` |