| 
									
										
										
										
											2022-04-28 02:28:14 +00:00
										 |  |  |  | # SAR
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | - [1. 算法简介](#1) | 
					
						
							|  |  |  |  | - [2. 环境配置](#2) | 
					
						
							|  |  |  |  | - [3. 模型训练、评估、预测](#3) | 
					
						
							|  |  |  |  |     - [3.1 训练](#3-1) | 
					
						
							|  |  |  |  |     - [3.2 评估](#3-2) | 
					
						
							|  |  |  |  |     - [3.3 预测](#3-3) | 
					
						
							|  |  |  |  | - [4. 推理部署](#4) | 
					
						
							|  |  |  |  |     - [4.1 Python推理](#4-1) | 
					
						
							|  |  |  |  |     - [4.2 C++推理](#4-2) | 
					
						
							|  |  |  |  |     - [4.3 Serving服务化部署](#4-3) | 
					
						
							|  |  |  |  |     - [4.4 更多推理部署](#4-4) | 
					
						
							|  |  |  |  | - [5. FAQ](#5) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="1"></a> | 
					
						
							|  |  |  |  | ## 1. 算法简介
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 论文信息: | 
					
						
							|  |  |  |  | > [Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition](https://arxiv.org/abs/1811.00751)
 | 
					
						
							|  |  |  |  | > Hui Li, Peng Wang, Chunhua Shen, Guyu Zhang
 | 
					
						
							|  |  |  |  | > AAAI, 2019
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | |模型|骨干网络|配置文件|Acc|下载链接| | 
					
						
							| 
									
										
										
										
											2022-04-28 11:23:53 +00:00
										 |  |  |  | | --- | --- | --- | --- | --- | | 
					
						
							| 
									
										
										
										
											2022-04-28 02:28:14 +00:00
										 |  |  |  | |SAR|ResNet31|[rec_r31_sar.yml](../../configs/rec/rec_r31_sar.yml)|87.20%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar)| | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 注:除了使用MJSynth和SynthText两个文字识别数据集外,还加入了[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg)数据(提取码:627x),和部分真实数据,具体数据细节可以参考论文。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="2"></a> | 
					
						
							|  |  |  |  | ## 2. 环境配置
 | 
					
						
							|  |  |  |  | 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="3"></a> | 
					
						
							|  |  |  |  | ## 3. 模型训练、评估、预测
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 训练 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 具体地,在完成数据准备后,便可以启动训练,训练命令如下: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | #单卡训练(训练周期长,不建议)
 | 
					
						
							|  |  |  |  | python3 tools/train.py -c configs/rec/rec_r31_sar.yml | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #多卡训练,通过--gpus参数指定卡号
 | 
					
						
							|  |  |  |  | python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r31_sar.yml | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 评估 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | # GPU 评估, Global.pretrained_model 为待测权重
 | 
					
						
							|  |  |  |  | python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_sar.yml -o Global.pretrained_model={path/to/weights}/best_accuracy | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 预测: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | # 预测使用的配置文件必须与训练一致
 | 
					
						
							|  |  |  |  | python3 tools/infer_rec.py -c configs/rec/rec_r31_sar.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4"></a> | 
					
						
							|  |  |  |  | ## 4. 推理部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-1"></a> | 
					
						
							|  |  |  |  | ### 4.1 Python推理
 | 
					
						
							|  |  |  |  | 首先将SAR文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) ),可以使用如下命令进行转换: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | python3 tools/export_model.py -c configs/rec/rec_r31_sar.yml -o Global.pretrained_model=./rec_r31_sar_train/best_accuracy  Global.save_inference_dir=./inference/rec_sar | 
					
						
							|  |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | SAR文本识别模型推理,可以执行如下命令: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ``` | 
					
						
							| 
									
										
										
										
											2022-08-16 09:34:48 +00:00
										 |  |  |  | python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_sar/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="SAR" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False | 
					
						
							| 
									
										
										
										
											2022-04-28 02:28:14 +00:00
										 |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-2"></a> | 
					
						
							|  |  |  |  | ### 4.2 C++推理
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 由于C++预处理后处理还未支持SAR,所以暂未支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-3"></a> | 
					
						
							|  |  |  |  | ### 4.3 Serving服务化部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 暂不支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="4-4"></a> | 
					
						
							|  |  |  |  | ### 4.4 更多推理部署
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 暂不支持 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | <a name="5"></a> | 
					
						
							|  |  |  |  | ## 5. FAQ
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ## 引用
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```bibtex | 
					
						
							|  |  |  |  | @article{Li2019ShowAA, | 
					
						
							|  |  |  |  |   title={Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition}, | 
					
						
							|  |  |  |  |   author={Hui Li and Peng Wang and Chunhua Shen and Guyu Zhang}, | 
					
						
							|  |  |  |  |   journal={ArXiv}, | 
					
						
							|  |  |  |  |   year={2019}, | 
					
						
							|  |  |  |  |   volume={abs/1811.00751} | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | ``` |