| 
									
										
										
										
											2021-12-06 13:01:15 +00:00
										 |  |  |  | # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | #     http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  |  | # limitations under the License. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | import paddle | 
					
						
							|  |  |  |  | import numbers | 
					
						
							|  |  |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2022-01-05 11:03:45 +00:00
										 |  |  |  | from collections import defaultdict | 
					
						
							| 
									
										
										
										
											2021-12-06 13:01:15 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-05 11:03:45 +00:00
										 |  |  |  | class DictCollator(object): | 
					
						
							| 
									
										
										
										
											2021-12-07 01:58:20 +00:00
										 |  |  |  |     """
 | 
					
						
							|  |  |  |  |     data batch | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-06 13:01:15 +00:00
										 |  |  |  |     def __call__(self, batch): | 
					
						
							| 
									
										
										
										
											2022-01-14 04:41:03 +00:00
										 |  |  |  |         # todo:support batch operators  | 
					
						
							| 
									
										
										
										
											2022-01-05 11:03:45 +00:00
										 |  |  |  |         data_dict = defaultdict(list) | 
					
						
							| 
									
										
										
										
											2021-12-06 13:01:15 +00:00
										 |  |  |  |         to_tensor_keys = [] | 
					
						
							|  |  |  |  |         for sample in batch: | 
					
						
							|  |  |  |  |             for k, v in sample.items(): | 
					
						
							|  |  |  |  |                 if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)): | 
					
						
							|  |  |  |  |                     if k not in to_tensor_keys: | 
					
						
							|  |  |  |  |                         to_tensor_keys.append(k) | 
					
						
							|  |  |  |  |                 data_dict[k].append(v) | 
					
						
							|  |  |  |  |         for k in to_tensor_keys: | 
					
						
							|  |  |  |  |             data_dict[k] = paddle.to_tensor(data_dict[k]) | 
					
						
							|  |  |  |  |         return data_dict | 
					
						
							| 
									
										
										
										
											2022-01-05 11:03:45 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | class ListCollator(object): | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     data batch | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __call__(self, batch): | 
					
						
							| 
									
										
										
										
											2022-01-14 04:41:03 +00:00
										 |  |  |  |         # todo:support batch operators  | 
					
						
							| 
									
										
										
										
											2022-01-05 11:03:45 +00:00
										 |  |  |  |         data_dict = defaultdict(list) | 
					
						
							|  |  |  |  |         to_tensor_idxs = [] | 
					
						
							|  |  |  |  |         for sample in batch: | 
					
						
							|  |  |  |  |             for idx, v in enumerate(sample): | 
					
						
							|  |  |  |  |                 if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)): | 
					
						
							|  |  |  |  |                     if idx not in to_tensor_idxs: | 
					
						
							|  |  |  |  |                         to_tensor_idxs.append(idx) | 
					
						
							|  |  |  |  |                 data_dict[idx].append(v) | 
					
						
							|  |  |  |  |         for idx in to_tensor_idxs: | 
					
						
							|  |  |  |  |             data_dict[idx] = paddle.to_tensor(data_dict[idx]) | 
					
						
							|  |  |  |  |         return list(data_dict.values()) | 
					
						
							| 
									
										
										
										
											2022-04-27 18:46:48 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | class SSLRotateCollate(object): | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     bach: [ | 
					
						
							|  |  |  |  |         [(4*3xH*W), (4,)] | 
					
						
							|  |  |  |  |         [(4*3xH*W), (4,)] | 
					
						
							|  |  |  |  |         ... | 
					
						
							|  |  |  |  |     ] | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __call__(self, batch): | 
					
						
							|  |  |  |  |         output = [np.concatenate(d, axis=0) for d in zip(*batch)] | 
					
						
							|  |  |  |  |         return output | 
					
						
							| 
									
										
										
										
											2022-10-15 20:27:05 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | class DyMaskCollator(object): | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     batch: [ | 
					
						
							|  |  |  |  |         image [batch_size, channel, maxHinbatch, maxWinbatch] | 
					
						
							|  |  |  |  |         image_mask [batch_size, channel, maxHinbatch, maxWinbatch] | 
					
						
							|  |  |  |  |         label [batch_size, maxLabelLen] | 
					
						
							|  |  |  |  |         label_mask [batch_size, maxLabelLen] | 
					
						
							|  |  |  |  |         ... | 
					
						
							|  |  |  |  |     ] | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __call__(self, batch): | 
					
						
							|  |  |  |  |         max_width, max_height, max_length = 0, 0, 0 | 
					
						
							|  |  |  |  |         bs, channel = len(batch), batch[0][0].shape[0] | 
					
						
							|  |  |  |  |         proper_items = [] | 
					
						
							|  |  |  |  |         for item in batch: | 
					
						
							|  |  |  |  |             if item[0].shape[1] * max_width > 1600 * 320 or item[0].shape[ | 
					
						
							|  |  |  |  |                     2] * max_height > 1600 * 320: | 
					
						
							|  |  |  |  |                 continue | 
					
						
							|  |  |  |  |             max_height = item[0].shape[1] if item[0].shape[ | 
					
						
							|  |  |  |  |                 1] > max_height else max_height | 
					
						
							|  |  |  |  |             max_width = item[0].shape[2] if item[0].shape[ | 
					
						
							|  |  |  |  |                 2] > max_width else max_width | 
					
						
							| 
									
										
										
										
											2022-10-17 15:04:42 +08:00
										 |  |  |  |             max_length = len(item[1]) if len(item[ | 
					
						
							|  |  |  |  |                 1]) > max_length else max_length | 
					
						
							| 
									
										
										
										
											2022-10-15 20:27:05 +08:00
										 |  |  |  |             proper_items.append(item) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         images, image_masks = np.zeros( | 
					
						
							|  |  |  |  |             (len(proper_items), channel, max_height, max_width), | 
					
						
							|  |  |  |  |             dtype='float32'), np.zeros( | 
					
						
							|  |  |  |  |                 (len(proper_items), 1, max_height, max_width), dtype='float32') | 
					
						
							|  |  |  |  |         labels, label_masks = np.zeros( | 
					
						
							|  |  |  |  |             (len(proper_items), max_length), dtype='int64'), np.zeros( | 
					
						
							|  |  |  |  |                 (len(proper_items), max_length), dtype='int64') | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         for i in range(len(proper_items)): | 
					
						
							|  |  |  |  |             _, h, w = proper_items[i][0].shape | 
					
						
							|  |  |  |  |             images[i][:, :h, :w] = proper_items[i][0] | 
					
						
							|  |  |  |  |             image_masks[i][:, :h, :w] = 1 | 
					
						
							| 
									
										
										
										
											2022-10-17 15:04:42 +08:00
										 |  |  |  |             l = len(proper_items[i][1]) | 
					
						
							| 
									
										
										
										
											2022-10-15 20:27:05 +08:00
										 |  |  |  |             labels[i][:l] = proper_items[i][1] | 
					
						
							|  |  |  |  |             label_masks[i][:l] = 1 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         return images, image_masks, labels, label_masks |