mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
	
	
		
			88 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			88 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | ||
|  | # | ||
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
|  | # you may not use this file except in compliance with the License. | ||
|  | # You may obtain a copy of the License at | ||
|  | # | ||
|  | #    http://www.apache.org/licenses/LICENSE-2.0 | ||
|  | # | ||
|  | # Unless required by applicable law or agreed to in writing, software | ||
|  | # distributed under the License is distributed on an "AS IS" BASIS, | ||
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
|  | # See the License for the specific language governing permissions and | ||
|  | # limitations under the License. | ||
|  | """
 | ||
|  | This code is refer from:  | ||
|  | https://github.com/open-mmlab/mmocr/blob/1.x/mmocr/models/textrecog/backbones/shallow_cnn.py | ||
|  | """
 | ||
|  | 
 | ||
|  | from __future__ import absolute_import | ||
|  | from __future__ import division | ||
|  | from __future__ import print_function | ||
|  | 
 | ||
|  | import math | ||
|  | import numpy as np | ||
|  | import paddle | ||
|  | from paddle import ParamAttr | ||
|  | import paddle.nn as nn | ||
|  | import paddle.nn.functional as F | ||
|  | from paddle.nn import MaxPool2D | ||
|  | from paddle.nn.initializer import KaimingNormal, Uniform, Constant | ||
|  | 
 | ||
|  | 
 | ||
|  | class ConvBNLayer(nn.Layer): | ||
|  |     def __init__(self, | ||
|  |                  num_channels, | ||
|  |                  filter_size, | ||
|  |                  num_filters, | ||
|  |                  stride, | ||
|  |                  padding, | ||
|  |                  num_groups=1): | ||
|  |         super(ConvBNLayer, self).__init__() | ||
|  | 
 | ||
|  |         self.conv = nn.Conv2D( | ||
|  |             in_channels=num_channels, | ||
|  |             out_channels=num_filters, | ||
|  |             kernel_size=filter_size, | ||
|  |             stride=stride, | ||
|  |             padding=padding, | ||
|  |             groups=num_groups, | ||
|  |             weight_attr=ParamAttr(initializer=KaimingNormal()), | ||
|  |             bias_attr=False) | ||
|  | 
 | ||
|  |         self.bn = nn.BatchNorm2D( | ||
|  |             num_filters, | ||
|  |             weight_attr=ParamAttr(initializer=Uniform(0, 1)), | ||
|  |             bias_attr=ParamAttr(initializer=Constant(0))) | ||
|  |         self.relu = nn.ReLU() | ||
|  | 
 | ||
|  |     def forward(self, inputs): | ||
|  |         y = self.conv(inputs) | ||
|  |         y = self.bn(y) | ||
|  |         y = self.relu(y) | ||
|  |         return y | ||
|  | 
 | ||
|  | 
 | ||
|  | class ShallowCNN(nn.Layer): | ||
|  |     def __init__(self, in_channels=1, hidden_dim=512): | ||
|  |         super().__init__() | ||
|  |         assert isinstance(in_channels, int) | ||
|  |         assert isinstance(hidden_dim, int) | ||
|  | 
 | ||
|  |         self.conv1 = ConvBNLayer( | ||
|  |             in_channels, 3, hidden_dim // 2, stride=1, padding=1) | ||
|  |         self.conv2 = ConvBNLayer( | ||
|  |             hidden_dim // 2, 3, hidden_dim, stride=1, padding=1) | ||
|  |         self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | ||
|  |         self.out_channels = hidden_dim | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  | 
 | ||
|  |         x = self.conv1(x) | ||
|  |         x = self.pool(x) | ||
|  | 
 | ||
|  |         x = self.conv2(x) | ||
|  |         x = self.pool(x) | ||
|  | 
 | ||
|  |         return x |