| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | # | 
					
						
							|  |  |  | #    http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import math | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import paddle | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | from paddle import ParamAttr, nn | 
					
						
							| 
									
										
										
										
											2020-10-23 12:07:44 +08:00
										 |  |  | from paddle.nn import functional as F | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-02 08:31:57 +00:00
										 |  |  | def get_para_bias_attr(l2_decay, k): | 
					
						
							| 
									
										
										
										
											2020-11-12 17:14:33 +08:00
										 |  |  |     regularizer = paddle.regularizer.L2Decay(l2_decay) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |     stdv = 1.0 / math.sqrt(k * 1.0) | 
					
						
							|  |  |  |     initializer = nn.initializer.Uniform(-stdv, stdv) | 
					
						
							| 
									
										
										
										
											2021-06-02 08:31:57 +00:00
										 |  |  |     weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer) | 
					
						
							|  |  |  |     bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |     return [weight_attr, bias_attr] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-12 17:14:33 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  | class CTCHead(nn.Layer): | 
					
						
							| 
									
										
										
										
											2021-06-17 13:29:49 +08:00
										 |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  in_channels, | 
					
						
							|  |  |  |                  out_channels, | 
					
						
							|  |  |  |                  fc_decay=0.0004, | 
					
						
							|  |  |  |                  mid_channels=None, | 
					
						
							| 
									
										
										
										
											2021-09-29 10:30:09 +08:00
										 |  |  |                  return_feats=False, | 
					
						
							| 
									
										
										
										
											2021-06-17 13:29:49 +08:00
										 |  |  |                  **kwargs): | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |         super(CTCHead, self).__init__() | 
					
						
							| 
									
										
										
										
											2021-06-17 13:29:49 +08:00
										 |  |  |         if mid_channels is None: | 
					
						
							|  |  |  |             weight_attr, bias_attr = get_para_bias_attr( | 
					
						
							|  |  |  |                 l2_decay=fc_decay, k=in_channels) | 
					
						
							|  |  |  |             self.fc = nn.Linear( | 
					
						
							|  |  |  |                 in_channels, | 
					
						
							|  |  |  |                 out_channels, | 
					
						
							|  |  |  |                 weight_attr=weight_attr, | 
					
						
							|  |  |  |                 bias_attr=bias_attr) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             weight_attr1, bias_attr1 = get_para_bias_attr( | 
					
						
							|  |  |  |                 l2_decay=fc_decay, k=in_channels) | 
					
						
							|  |  |  |             self.fc1 = nn.Linear( | 
					
						
							|  |  |  |                 in_channels, | 
					
						
							|  |  |  |                 mid_channels, | 
					
						
							|  |  |  |                 weight_attr=weight_attr1, | 
					
						
							|  |  |  |                 bias_attr=bias_attr1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             weight_attr2, bias_attr2 = get_para_bias_attr( | 
					
						
							|  |  |  |                 l2_decay=fc_decay, k=mid_channels) | 
					
						
							|  |  |  |             self.fc2 = nn.Linear( | 
					
						
							|  |  |  |                 mid_channels, | 
					
						
							|  |  |  |                 out_channels, | 
					
						
							|  |  |  |                 weight_attr=weight_attr2, | 
					
						
							|  |  |  |                 bias_attr=bias_attr2) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         self.out_channels = out_channels | 
					
						
							| 
									
										
										
										
											2021-06-17 13:29:49 +08:00
										 |  |  |         self.mid_channels = mid_channels | 
					
						
							| 
									
										
										
										
											2021-09-29 10:30:09 +08:00
										 |  |  |         self.return_feats = return_feats | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-22 03:32:00 +00:00
										 |  |  |     def forward(self, x, targets=None): | 
					
						
							| 
									
										
										
										
											2021-06-17 13:29:49 +08:00
										 |  |  |         if self.mid_channels is None: | 
					
						
							|  |  |  |             predicts = self.fc(x) | 
					
						
							|  |  |  |         else: | 
					
						
							| 
									
										
										
										
											2021-09-29 10:30:09 +08:00
										 |  |  |             x = self.fc1(x) | 
					
						
							|  |  |  |             predicts = self.fc2(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.return_feats: | 
					
						
							|  |  |  |             result = (x, predicts) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             result = predicts | 
					
						
							| 
									
										
										
										
											2020-10-23 12:07:44 +08:00
										 |  |  |         if not self.training: | 
					
						
							|  |  |  |             predicts = F.softmax(predicts, axis=2) | 
					
						
							| 
									
										
										
										
											2021-09-29 10:30:09 +08:00
										 |  |  |             result = predicts | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return result |