mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-26 21:24:27 +00:00
369 lines
11 KiB
Python
369 lines
11 KiB
Python
![]() |
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
import paddle
|
||
|
from numpy.fft import ifft
|
||
|
import Polygon as plg
|
||
|
|
||
|
|
||
|
def points2polygon(points):
|
||
|
"""Convert k points to 1 polygon.
|
||
|
|
||
|
Args:
|
||
|
points (ndarray or list): A ndarray or a list of shape (2k)
|
||
|
that indicates k points.
|
||
|
|
||
|
Returns:
|
||
|
polygon (Polygon): A polygon object.
|
||
|
"""
|
||
|
if isinstance(points, list):
|
||
|
points = np.array(points)
|
||
|
|
||
|
assert isinstance(points, np.ndarray)
|
||
|
assert (points.size % 2 == 0) and (points.size >= 8)
|
||
|
|
||
|
point_mat = points.reshape([-1, 2])
|
||
|
return plg.Polygon(point_mat)
|
||
|
|
||
|
|
||
|
def poly_intersection(poly_det, poly_gt):
|
||
|
"""Calculate the intersection area between two polygon.
|
||
|
|
||
|
Args:
|
||
|
poly_det (Polygon): A polygon predicted by detector.
|
||
|
poly_gt (Polygon): A gt polygon.
|
||
|
|
||
|
Returns:
|
||
|
intersection_area (float): The intersection area between two polygons.
|
||
|
"""
|
||
|
assert isinstance(poly_det, plg.Polygon)
|
||
|
assert isinstance(poly_gt, plg.Polygon)
|
||
|
|
||
|
poly_inter = poly_det & poly_gt
|
||
|
if len(poly_inter) == 0:
|
||
|
return 0, poly_inter
|
||
|
return poly_inter.area(), poly_inter
|
||
|
|
||
|
|
||
|
def poly_union(poly_det, poly_gt):
|
||
|
"""Calculate the union area between two polygon.
|
||
|
|
||
|
Args:
|
||
|
poly_det (Polygon): A polygon predicted by detector.
|
||
|
poly_gt (Polygon): A gt polygon.
|
||
|
|
||
|
Returns:
|
||
|
union_area (float): The union area between two polygons.
|
||
|
"""
|
||
|
assert isinstance(poly_det, plg.Polygon)
|
||
|
assert isinstance(poly_gt, plg.Polygon)
|
||
|
|
||
|
area_det = poly_det.area()
|
||
|
area_gt = poly_gt.area()
|
||
|
area_inters, _ = poly_intersection(poly_det, poly_gt)
|
||
|
return area_det + area_gt - area_inters
|
||
|
|
||
|
|
||
|
def valid_boundary(x, with_score=True):
|
||
|
num = len(x)
|
||
|
if num < 8:
|
||
|
return False
|
||
|
if num % 2 == 0 and (not with_score):
|
||
|
return True
|
||
|
if num % 2 == 1 and with_score:
|
||
|
return True
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
def boundary_iou(src, target):
|
||
|
"""Calculate the IOU between two boundaries.
|
||
|
|
||
|
Args:
|
||
|
src (list): Source boundary.
|
||
|
target (list): Target boundary.
|
||
|
|
||
|
Returns:
|
||
|
iou (float): The iou between two boundaries.
|
||
|
"""
|
||
|
assert valid_boundary(src, False)
|
||
|
assert valid_boundary(target, False)
|
||
|
src_poly = points2polygon(src)
|
||
|
target_poly = points2polygon(target)
|
||
|
|
||
|
return poly_iou(src_poly, target_poly)
|
||
|
|
||
|
|
||
|
def poly_iou(poly_det, poly_gt):
|
||
|
"""Calculate the IOU between two polygons.
|
||
|
|
||
|
Args:
|
||
|
poly_det (Polygon): A polygon predicted by detector.
|
||
|
poly_gt (Polygon): A gt polygon.
|
||
|
|
||
|
Returns:
|
||
|
iou (float): The IOU between two polygons.
|
||
|
"""
|
||
|
assert isinstance(poly_det, plg.Polygon)
|
||
|
assert isinstance(poly_gt, plg.Polygon)
|
||
|
area_inters, _ = poly_intersection(poly_det, poly_gt)
|
||
|
area_union = poly_union(poly_det, poly_gt)
|
||
|
if area_union == 0:
|
||
|
return 0.0
|
||
|
return area_inters / area_union
|
||
|
|
||
|
|
||
|
def poly_nms(polygons, threshold):
|
||
|
assert isinstance(polygons, list)
|
||
|
|
||
|
polygons = np.array(sorted(polygons, key=lambda x: x[-1]))
|
||
|
|
||
|
keep_poly = []
|
||
|
index = [i for i in range(polygons.shape[0])]
|
||
|
|
||
|
while len(index) > 0:
|
||
|
keep_poly.append(polygons[index[-1]].tolist())
|
||
|
A = polygons[index[-1]][:-1]
|
||
|
index = np.delete(index, -1)
|
||
|
|
||
|
iou_list = np.zeros((len(index), ))
|
||
|
for i in range(len(index)):
|
||
|
B = polygons[index[i]][:-1]
|
||
|
|
||
|
iou_list[i] = boundary_iou(A, B)
|
||
|
remove_index = np.where(iou_list > threshold)
|
||
|
index = np.delete(index, remove_index)
|
||
|
|
||
|
return keep_poly
|
||
|
|
||
|
|
||
|
def fill_hole(input_mask):
|
||
|
h, w = input_mask.shape
|
||
|
canvas = np.zeros((h + 2, w + 2), np.uint8)
|
||
|
canvas[1:h + 1, 1:w + 1] = input_mask.copy()
|
||
|
|
||
|
mask = np.zeros((h + 4, w + 4), np.uint8)
|
||
|
|
||
|
cv2.floodFill(canvas, mask, (0, 0), 1)
|
||
|
canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)
|
||
|
|
||
|
return ~canvas | input_mask
|
||
|
|
||
|
|
||
|
def fourier2poly(fourier_coeff, num_reconstr_points=50):
|
||
|
""" Inverse Fourier transform
|
||
|
Args:
|
||
|
fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
|
||
|
with n and k being candidates number and Fourier degree
|
||
|
respectively.
|
||
|
num_reconstr_points (int): Number of reconstructed polygon points.
|
||
|
Returns:
|
||
|
Polygons (ndarray): The reconstructed polygons shaped (n, n')
|
||
|
"""
|
||
|
|
||
|
a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex')
|
||
|
k = (len(fourier_coeff[0]) - 1) // 2
|
||
|
|
||
|
a[:, 0:k + 1] = fourier_coeff[:, k:]
|
||
|
a[:, -k:] = fourier_coeff[:, :k]
|
||
|
|
||
|
poly_complex = ifft(a) * num_reconstr_points
|
||
|
polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
|
||
|
polygon[:, :, 0] = poly_complex.real
|
||
|
polygon[:, :, 1] = poly_complex.imag
|
||
|
return polygon.astype('int32').reshape((len(fourier_coeff), -1))
|
||
|
|
||
|
|
||
|
def fcenet_decode(preds,
|
||
|
fourier_degree,
|
||
|
num_reconstr_points,
|
||
|
scale,
|
||
|
alpha=1.0,
|
||
|
beta=2.0,
|
||
|
text_repr_type='poly',
|
||
|
score_thr=0.3,
|
||
|
nms_thr=0.1):
|
||
|
"""Decoding predictions of FCENet to instances.
|
||
|
|
||
|
Args:
|
||
|
preds (list(Tensor)): The head output tensors.
|
||
|
fourier_degree (int): The maximum Fourier transform degree k.
|
||
|
num_reconstr_points (int): The points number of the polygon
|
||
|
reconstructed from predicted Fourier coefficients.
|
||
|
scale (int): The down-sample scale of the prediction.
|
||
|
alpha (float) : The parameter to calculate final scores. Score_{final}
|
||
|
= (Score_{text region} ^ alpha)
|
||
|
* (Score_{text center region}^ beta)
|
||
|
beta (float) : The parameter to calculate final score.
|
||
|
text_repr_type (str): Boundary encoding type 'poly' or 'quad'.
|
||
|
score_thr (float) : The threshold used to filter out the final
|
||
|
candidates.
|
||
|
nms_thr (float) : The threshold of nms.
|
||
|
|
||
|
Returns:
|
||
|
boundaries (list[list[float]]): The instance boundary and confidence
|
||
|
list.
|
||
|
"""
|
||
|
assert isinstance(preds, list)
|
||
|
assert len(preds) == 2
|
||
|
assert text_repr_type in ['poly', 'quad']
|
||
|
|
||
|
# import pdb;pdb.set_trace()
|
||
|
cls_pred = preds[0][0]
|
||
|
# tr_pred = F.softmax(cls_pred[0:2], axis=0).cpu().numpy()
|
||
|
# tcl_pred = F.softmax(cls_pred[2:], axis=0).cpu().numpy()
|
||
|
|
||
|
tr_pred = cls_pred[0:2]
|
||
|
tcl_pred = cls_pred[2:]
|
||
|
|
||
|
reg_pred = preds[1][0].transpose([1, 2, 0]) #.cpu().numpy()
|
||
|
x_pred = reg_pred[:, :, :2 * fourier_degree + 1]
|
||
|
y_pred = reg_pred[:, :, 2 * fourier_degree + 1:]
|
||
|
|
||
|
score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta)
|
||
|
tr_pred_mask = (score_pred) > score_thr
|
||
|
tr_mask = fill_hole(tr_pred_mask)
|
||
|
|
||
|
tr_contours, _ = cv2.findContours(
|
||
|
tr_mask.astype(np.uint8), cv2.RETR_TREE,
|
||
|
cv2.CHAIN_APPROX_SIMPLE) # opencv4
|
||
|
|
||
|
mask = np.zeros_like(tr_mask)
|
||
|
boundaries = []
|
||
|
for cont in tr_contours:
|
||
|
deal_map = mask.copy().astype(np.int8)
|
||
|
cv2.drawContours(deal_map, [cont], -1, 1, -1)
|
||
|
|
||
|
score_map = score_pred * deal_map
|
||
|
score_mask = score_map > 0
|
||
|
xy_text = np.argwhere(score_mask)
|
||
|
dxy = xy_text[:, 1] + xy_text[:, 0] * 1j
|
||
|
|
||
|
x, y = x_pred[score_mask], y_pred[score_mask]
|
||
|
c = x + y * 1j
|
||
|
c[:, fourier_degree] = c[:, fourier_degree] + dxy
|
||
|
c *= scale
|
||
|
|
||
|
polygons = fourier2poly(c, num_reconstr_points)
|
||
|
score = score_map[score_mask].reshape(-1, 1)
|
||
|
polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)
|
||
|
|
||
|
boundaries = boundaries + polygons
|
||
|
|
||
|
boundaries = poly_nms(boundaries, nms_thr)
|
||
|
|
||
|
if text_repr_type == 'quad':
|
||
|
new_boundaries = []
|
||
|
for boundary in boundaries:
|
||
|
poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
|
||
|
score = boundary[-1]
|
||
|
points = cv2.boxPoints(cv2.minAreaRect(poly))
|
||
|
points = np.int0(points)
|
||
|
new_boundaries.append(points.reshape(-1).tolist() + [score])
|
||
|
|
||
|
return boundaries
|
||
|
|
||
|
|
||
|
class FCEPostProcess(object):
|
||
|
"""
|
||
|
The post process for FCENet.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
scales,
|
||
|
fourier_degree=5,
|
||
|
num_reconstr_points=50,
|
||
|
decoding_type='fcenet',
|
||
|
score_thr=0.3,
|
||
|
nms_thr=0.1,
|
||
|
alpha=1.0,
|
||
|
beta=1.0,
|
||
|
text_repr_type='poly',
|
||
|
**kwargs):
|
||
|
|
||
|
self.scales = scales
|
||
|
self.fourier_degree = fourier_degree
|
||
|
self.num_reconstr_points = num_reconstr_points
|
||
|
self.decoding_type = decoding_type
|
||
|
self.score_thr = score_thr
|
||
|
self.nms_thr = nms_thr
|
||
|
self.alpha = alpha
|
||
|
self.beta = beta
|
||
|
self.text_repr_type = text_repr_type
|
||
|
|
||
|
def __call__(self, preds, shape_list):
|
||
|
score_maps = []
|
||
|
for key, value in preds.items():
|
||
|
if isinstance(value, paddle.Tensor):
|
||
|
value = value.numpy()
|
||
|
cls_res = value[:, :4, :, :]
|
||
|
reg_res = value[:, 4:, :, :]
|
||
|
score_maps.append([cls_res, reg_res])
|
||
|
|
||
|
return self.get_boundary(score_maps, shape_list)
|
||
|
|
||
|
def resize_boundary(self, boundaries, scale_factor):
|
||
|
"""Rescale boundaries via scale_factor.
|
||
|
|
||
|
Args:
|
||
|
boundaries (list[list[float]]): The boundary list. Each boundary
|
||
|
with size 2k+1 with k>=4.
|
||
|
scale_factor(ndarray): The scale factor of size (4,).
|
||
|
|
||
|
Returns:
|
||
|
boundaries (list[list[float]]): The scaled boundaries.
|
||
|
"""
|
||
|
# assert check_argument.is_2dlist(boundaries)
|
||
|
# assert isinstance(scale_factor, np.ndarray)
|
||
|
# assert scale_factor.shape[0] == 4
|
||
|
|
||
|
boxes = []
|
||
|
scores = []
|
||
|
for b in boundaries:
|
||
|
sz = len(b)
|
||
|
valid_boundary(b, True)
|
||
|
scores.append(b[-1])
|
||
|
b = (np.array(b[:sz - 1]) *
|
||
|
(np.tile(scale_factor[:2], int(
|
||
|
(sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
|
||
|
boxes.append(np.array(b).reshape([-1, 2]))
|
||
|
|
||
|
return np.array(boxes, dtype=np.float32), scores
|
||
|
|
||
|
def get_boundary(self, score_maps, shape_list):
|
||
|
assert len(score_maps) == len(self.scales)
|
||
|
# import pdb;pdb.set_trace()
|
||
|
boundaries = []
|
||
|
for idx, score_map in enumerate(score_maps):
|
||
|
scale = self.scales[idx]
|
||
|
boundaries = boundaries + self._get_boundary_single(score_map,
|
||
|
scale)
|
||
|
|
||
|
# nms
|
||
|
boundaries = poly_nms(boundaries, self.nms_thr)
|
||
|
# if rescale:
|
||
|
# import pdb;pdb.set_trace()
|
||
|
boundaries, scores = self.resize_boundary(
|
||
|
boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])
|
||
|
|
||
|
boxes_batch = [dict(points=boundaries, scores=scores)]
|
||
|
return boxes_batch
|
||
|
|
||
|
def _get_boundary_single(self, score_map, scale):
|
||
|
assert len(score_map) == 2
|
||
|
assert score_map[1].shape[1] == 4 * self.fourier_degree + 2
|
||
|
|
||
|
return fcenet_decode(
|
||
|
preds=score_map,
|
||
|
fourier_degree=self.fourier_degree,
|
||
|
num_reconstr_points=self.num_reconstr_points,
|
||
|
scale=scale,
|
||
|
alpha=self.alpha,
|
||
|
beta=self.beta,
|
||
|
text_repr_type=self.text_repr_type,
|
||
|
score_thr=self.score_thr,
|
||
|
nms_thr=self.nms_thr)
|