| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  | # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | #     http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  |  | # limitations under the License. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  |  | from __future__ import division | 
					
						
							|  |  |  |  | from __future__ import print_function | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  | import os | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  | import sys | 
					
						
							|  |  |  |  | import yaml | 
					
						
							|  |  |  |  | import time | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  | import shutil | 
					
						
							|  |  |  |  | import paddle | 
					
						
							|  |  |  |  | import paddle.distributed as dist | 
					
						
							|  |  |  |  | from tqdm import tqdm | 
					
						
							|  |  |  |  | from argparse import ArgumentParser, RawDescriptionHelpFormatter | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  | from ppocr.utils.stats import TrainingStats | 
					
						
							|  |  |  |  | from ppocr.utils.save_load import save_model | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  | from ppocr.utils.utility import print_dict | 
					
						
							|  |  |  |  | from ppocr.utils.logging import get_logger | 
					
						
							|  |  |  |  | from ppocr.data import build_dataloader | 
					
						
							|  |  |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  | class ArgsParser(ArgumentParser): | 
					
						
							|  |  |  |  |     def __init__(self): | 
					
						
							|  |  |  |  |         super(ArgsParser, self).__init__( | 
					
						
							|  |  |  |  |             formatter_class=RawDescriptionHelpFormatter) | 
					
						
							|  |  |  |  |         self.add_argument("-c", "--config", help="configuration file to use") | 
					
						
							|  |  |  |  |         self.add_argument( | 
					
						
							|  |  |  |  |             "-o", "--opt", nargs='+', help="set configuration options") | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def parse_args(self, argv=None): | 
					
						
							|  |  |  |  |         args = super(ArgsParser, self).parse_args(argv) | 
					
						
							|  |  |  |  |         assert args.config is not None, \ | 
					
						
							|  |  |  |  |             "Please specify --config=configure_file_path." | 
					
						
							|  |  |  |  |         args.opt = self._parse_opt(args.opt) | 
					
						
							|  |  |  |  |         return args | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def _parse_opt(self, opts): | 
					
						
							|  |  |  |  |         config = {} | 
					
						
							|  |  |  |  |         if not opts: | 
					
						
							|  |  |  |  |             return config | 
					
						
							|  |  |  |  |         for s in opts: | 
					
						
							|  |  |  |  |             s = s.strip() | 
					
						
							|  |  |  |  |             k, v = s.split('=') | 
					
						
							|  |  |  |  |             config[k] = yaml.load(v, Loader=yaml.Loader) | 
					
						
							|  |  |  |  |         return config | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | class AttrDict(dict): | 
					
						
							|  |  |  |  |     """Single level attribute dict, NOT recursive""" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __init__(self, **kwargs): | 
					
						
							|  |  |  |  |         super(AttrDict, self).__init__() | 
					
						
							|  |  |  |  |         super(AttrDict, self).update(kwargs) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __getattr__(self, key): | 
					
						
							|  |  |  |  |         if key in self: | 
					
						
							|  |  |  |  |             return self[key] | 
					
						
							|  |  |  |  |         raise AttributeError("object has no attribute '{}'".format(key)) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | global_config = AttrDict() | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-11 12:14:05 +08:00
										 |  |  |  | default_config = {'Global': {'debug': False, }} | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | def load_config(file_path): | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     Load config from yml/yaml file. | 
					
						
							|  |  |  |  |     Args: | 
					
						
							|  |  |  |  |         file_path (str): Path of the config file to be loaded. | 
					
						
							|  |  |  |  |     Returns: global config | 
					
						
							|  |  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2020-07-11 12:14:05 +08:00
										 |  |  |  |     merge_config(default_config) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |     _, ext = os.path.splitext(file_path) | 
					
						
							|  |  |  |  |     assert ext in ['.yml', '.yaml'], "only support yaml files for now" | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |     return global_config | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def merge_config(config): | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     Merge config into global config. | 
					
						
							|  |  |  |  |     Args: | 
					
						
							|  |  |  |  |         config (dict): Config to be merged. | 
					
						
							|  |  |  |  |     Returns: global config | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     for key, value in config.items(): | 
					
						
							|  |  |  |  |         if "." not in key: | 
					
						
							|  |  |  |  |             if isinstance(value, dict) and key in global_config: | 
					
						
							|  |  |  |  |                 global_config[key].update(value) | 
					
						
							|  |  |  |  |             else: | 
					
						
							|  |  |  |  |                 global_config[key] = value | 
					
						
							|  |  |  |  |         else: | 
					
						
							|  |  |  |  |             sub_keys = key.split('.') | 
					
						
							| 
									
										
										
										
											2020-06-17 16:11:29 +08:00
										 |  |  |  |             assert ( | 
					
						
							|  |  |  |  |                 sub_keys[0] in global_config | 
					
						
							|  |  |  |  |             ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format( | 
					
						
							|  |  |  |  |                 global_config.keys(), sub_keys[0]) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |             cur = global_config[sub_keys[0]] | 
					
						
							|  |  |  |  |             for idx, sub_key in enumerate(sub_keys[1:]): | 
					
						
							|  |  |  |  |                 if idx == len(sub_keys) - 2: | 
					
						
							|  |  |  |  |                     cur[sub_key] = value | 
					
						
							|  |  |  |  |                 else: | 
					
						
							|  |  |  |  |                     cur = cur[sub_key] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def check_gpu(use_gpu): | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     Log error and exit when set use_gpu=true in paddlepaddle | 
					
						
							|  |  |  |  |     cpu version. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     err = "Config use_gpu cannot be set as true while you are " \ | 
					
						
							|  |  |  |  |           "using paddlepaddle cpu version ! \nPlease try: \n" \ | 
					
						
							|  |  |  |  |           "\t1. Install paddlepaddle-gpu to run model on GPU \n" \ | 
					
						
							|  |  |  |  |           "\t2. Set use_gpu as false in config file to run " \ | 
					
						
							|  |  |  |  |           "model on CPU" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     try: | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |         if use_gpu and not paddle.fluid.is_compiled_with_cuda(): | 
					
						
							|  |  |  |  |             print(err) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |             sys.exit(1) | 
					
						
							|  |  |  |  |     except Exception as e: | 
					
						
							|  |  |  |  |         pass | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  | def train(config, | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  |           train_dataloader, | 
					
						
							|  |  |  |  |           valid_dataloader, | 
					
						
							|  |  |  |  |           device, | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |           model, | 
					
						
							|  |  |  |  |           loss_class, | 
					
						
							|  |  |  |  |           optimizer, | 
					
						
							|  |  |  |  |           lr_scheduler, | 
					
						
							|  |  |  |  |           post_process_class, | 
					
						
							|  |  |  |  |           eval_class, | 
					
						
							|  |  |  |  |           pre_best_model_dict, | 
					
						
							|  |  |  |  |           logger, | 
					
						
							|  |  |  |  |           vdl_writer=None): | 
					
						
							|  |  |  |  |     cal_metric_during_train = config['Global'].get('cal_metric_during_train', | 
					
						
							|  |  |  |  |                                                    False) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |     log_smooth_window = config['Global']['log_smooth_window'] | 
					
						
							|  |  |  |  |     epoch_num = config['Global']['epoch_num'] | 
					
						
							|  |  |  |  |     print_batch_step = config['Global']['print_batch_step'] | 
					
						
							|  |  |  |  |     eval_batch_step = config['Global']['eval_batch_step'] | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  |     global_step = 0 | 
					
						
							| 
									
										
										
										
											2020-07-07 02:35:17 +00:00
										 |  |  |  |     start_eval_step = 0 | 
					
						
							|  |  |  |  |     if type(eval_batch_step) == list and len(eval_batch_step) >= 2: | 
					
						
							|  |  |  |  |         start_eval_step = eval_batch_step[0] | 
					
						
							|  |  |  |  |         eval_batch_step = eval_batch_step[1] | 
					
						
							|  |  |  |  |         logger.info( | 
					
						
							|  |  |  |  |             "During the training process, after the {}th iteration, an evaluation is run every {} iterations". | 
					
						
							|  |  |  |  |             format(start_eval_step, eval_batch_step)) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |     save_epoch_step = config['Global']['save_epoch_step'] | 
					
						
							|  |  |  |  |     save_model_dir = config['Global']['save_model_dir'] | 
					
						
							| 
									
										
										
										
											2020-05-13 16:05:00 +08:00
										 |  |  |  |     if not os.path.exists(save_model_dir): | 
					
						
							|  |  |  |  |         os.makedirs(save_model_dir) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     main_indicator = eval_class.main_indicator | 
					
						
							|  |  |  |  |     best_model_dict = {main_indicator: 0} | 
					
						
							|  |  |  |  |     best_model_dict.update(pre_best_model_dict) | 
					
						
							|  |  |  |  |     train_stats = TrainingStats(log_smooth_window, ['lr']) | 
					
						
							|  |  |  |  |     model.train() | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if 'start_epoch' in best_model_dict: | 
					
						
							|  |  |  |  |         start_epoch = best_model_dict['start_epoch'] | 
					
						
							|  |  |  |  |     else: | 
					
						
							|  |  |  |  |         start_epoch = 0 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     for epoch in range(start_epoch, epoch_num): | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  |         if epoch > 0: | 
					
						
							| 
									
										
										
										
											2020-11-06 18:56:53 +08:00
										 |  |  |  |             train_dataloader = build_dataloader(config, 'Train', device, logger) | 
					
						
							| 
									
										
										
										
											2020-11-16 19:00:27 +08:00
										 |  |  |  |         train_batch_cost = 0.0 | 
					
						
							|  |  |  |  |         train_reader_cost = 0.0 | 
					
						
							|  |  |  |  |         batch_sum = 0 | 
					
						
							|  |  |  |  |         batch_start = time.time() | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |         for idx, batch in enumerate(train_dataloader): | 
					
						
							| 
									
										
										
										
											2020-11-16 19:00:27 +08:00
										 |  |  |  |             train_reader_cost += time.time() - batch_start | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |             if idx >= len(train_dataloader): | 
					
						
							|  |  |  |  |                 break | 
					
						
							|  |  |  |  |             lr = optimizer.get_lr() | 
					
						
							|  |  |  |  |             images = batch[0] | 
					
						
							|  |  |  |  |             preds = model(images) | 
					
						
							|  |  |  |  |             loss = loss_class(preds, batch) | 
					
						
							|  |  |  |  |             avg_loss = loss['loss'] | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  |             avg_loss.backward() | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |             optimizer.step() | 
					
						
							|  |  |  |  |             optimizer.clear_grad() | 
					
						
							| 
									
										
										
										
											2020-11-16 19:00:27 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |             train_batch_cost += time.time() - batch_start | 
					
						
							|  |  |  |  |             batch_sum += len(images) | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  |             if not isinstance(lr_scheduler, float): | 
					
						
							|  |  |  |  |                 lr_scheduler.step() | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |             # logger and visualdl | 
					
						
							|  |  |  |  |             stats = {k: v.numpy().mean() for k, v in loss.items()} | 
					
						
							|  |  |  |  |             stats['lr'] = lr | 
					
						
							|  |  |  |  |             train_stats.update(stats) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             if cal_metric_during_train:  # onlt rec and cls need | 
					
						
							|  |  |  |  |                 batch = [item.numpy() for item in batch] | 
					
						
							|  |  |  |  |                 post_result = post_process_class(preds, batch[1]) | 
					
						
							|  |  |  |  |                 eval_class(post_result, batch) | 
					
						
							|  |  |  |  |                 metirc = eval_class.get_metric() | 
					
						
							|  |  |  |  |                 train_stats.update(metirc) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             if vdl_writer is not None and dist.get_rank() == 0: | 
					
						
							|  |  |  |  |                 for k, v in train_stats.get().items(): | 
					
						
							|  |  |  |  |                     vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step) | 
					
						
							|  |  |  |  |                 vdl_writer.add_scalar('TRAIN/lr', lr, global_step) | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  |             if dist.get_rank( | 
					
						
							|  |  |  |  |             ) == 0 and global_step > 0 and global_step % print_batch_step == 0: | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |                 logs = train_stats.log() | 
					
						
							| 
									
										
										
										
											2020-11-16 19:02:00 +08:00
										 |  |  |  |                 strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format( | 
					
						
							| 
									
										
										
										
											2020-11-16 19:00:27 +08:00
										 |  |  |  |                     epoch, epoch_num, global_step, logs, train_reader_cost / | 
					
						
							|  |  |  |  |                     print_batch_step, train_batch_cost / print_batch_step, | 
					
						
							|  |  |  |  |                     batch_sum, batch_sum / train_batch_cost) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |                 logger.info(strs) | 
					
						
							| 
									
										
										
										
											2020-11-16 19:00:27 +08:00
										 |  |  |  |                 train_batch_cost = 0.0 | 
					
						
							|  |  |  |  |                 train_reader_cost = 0.0 | 
					
						
							|  |  |  |  |                 batch_sum = 0 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |             # eval | 
					
						
							|  |  |  |  |             if global_step > start_eval_step and \ | 
					
						
							|  |  |  |  |                     (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0: | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  |                 cur_metirc = eval(model, valid_dataloader, post_process_class, | 
					
						
							| 
									
										
										
										
											2020-11-09 13:28:46 +08:00
										 |  |  |  |                                   eval_class) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |                 cur_metirc_str = 'cur metirc, {}'.format(', '.join( | 
					
						
							|  |  |  |  |                     ['{}: {}'.format(k, v) for k, v in cur_metirc.items()])) | 
					
						
							|  |  |  |  |                 logger.info(cur_metirc_str) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                 # logger metric | 
					
						
							|  |  |  |  |                 if vdl_writer is not None: | 
					
						
							|  |  |  |  |                     for k, v in cur_metirc.items(): | 
					
						
							|  |  |  |  |                         if isinstance(v, (float, int)): | 
					
						
							|  |  |  |  |                             vdl_writer.add_scalar('EVAL/{}'.format(k), | 
					
						
							|  |  |  |  |                                                   cur_metirc[k], global_step) | 
					
						
							|  |  |  |  |                 if cur_metirc[main_indicator] >= best_model_dict[ | 
					
						
							|  |  |  |  |                         main_indicator]: | 
					
						
							|  |  |  |  |                     best_model_dict.update(cur_metirc) | 
					
						
							|  |  |  |  |                     best_model_dict['best_epoch'] = epoch | 
					
						
							|  |  |  |  |                     save_model( | 
					
						
							|  |  |  |  |                         model, | 
					
						
							|  |  |  |  |                         optimizer, | 
					
						
							|  |  |  |  |                         save_model_dir, | 
					
						
							|  |  |  |  |                         logger, | 
					
						
							|  |  |  |  |                         is_best=True, | 
					
						
							|  |  |  |  |                         prefix='best_accuracy', | 
					
						
							|  |  |  |  |                         best_model_dict=best_model_dict, | 
					
						
							|  |  |  |  |                         epoch=epoch) | 
					
						
							|  |  |  |  |                 best_str = 'best metirc, {}'.format(', '.join([ | 
					
						
							|  |  |  |  |                     '{}: {}'.format(k, v) for k, v in best_model_dict.items() | 
					
						
							|  |  |  |  |                 ])) | 
					
						
							|  |  |  |  |                 logger.info(best_str) | 
					
						
							|  |  |  |  |                 # logger best metric | 
					
						
							|  |  |  |  |                 if vdl_writer is not None: | 
					
						
							|  |  |  |  |                     vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator), | 
					
						
							|  |  |  |  |                                           best_model_dict[main_indicator], | 
					
						
							|  |  |  |  |                                           global_step) | 
					
						
							|  |  |  |  |             global_step += 1 | 
					
						
							| 
									
										
										
										
											2020-11-24 15:47:12 +08:00
										 |  |  |  |             batch_start = time.time() | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |         if dist.get_rank() == 0: | 
					
						
							|  |  |  |  |             save_model( | 
					
						
							|  |  |  |  |                 model, | 
					
						
							|  |  |  |  |                 optimizer, | 
					
						
							|  |  |  |  |                 save_model_dir, | 
					
						
							|  |  |  |  |                 logger, | 
					
						
							|  |  |  |  |                 is_best=False, | 
					
						
							|  |  |  |  |                 prefix='latest', | 
					
						
							|  |  |  |  |                 best_model_dict=best_model_dict, | 
					
						
							|  |  |  |  |                 epoch=epoch) | 
					
						
							|  |  |  |  |         if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0: | 
					
						
							|  |  |  |  |             save_model( | 
					
						
							|  |  |  |  |                 model, | 
					
						
							|  |  |  |  |                 optimizer, | 
					
						
							|  |  |  |  |                 save_model_dir, | 
					
						
							|  |  |  |  |                 logger, | 
					
						
							|  |  |  |  |                 is_best=False, | 
					
						
							|  |  |  |  |                 prefix='iter_epoch_{}'.format(epoch), | 
					
						
							|  |  |  |  |                 best_model_dict=best_model_dict, | 
					
						
							|  |  |  |  |                 epoch=epoch) | 
					
						
							|  |  |  |  |     best_str = 'best metirc, {}'.format(', '.join( | 
					
						
							|  |  |  |  |         ['{}: {}'.format(k, v) for k, v in best_model_dict.items()])) | 
					
						
							|  |  |  |  |     logger.info(best_str) | 
					
						
							|  |  |  |  |     if dist.get_rank() == 0 and vdl_writer is not None: | 
					
						
							|  |  |  |  |         vdl_writer.close() | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |  |     return | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-09 13:28:46 +08:00
										 |  |  |  | def eval(model, valid_dataloader, post_process_class, eval_class): | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     model.eval() | 
					
						
							|  |  |  |  |     with paddle.no_grad(): | 
					
						
							|  |  |  |  |         total_frame = 0.0 | 
					
						
							|  |  |  |  |         total_time = 0.0 | 
					
						
							| 
									
										
										
										
											2020-11-06 18:56:53 +08:00
										 |  |  |  |         pbar = tqdm(total=len(valid_dataloader), desc='eval model:') | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |         for idx, batch in enumerate(valid_dataloader): | 
					
						
							|  |  |  |  |             if idx >= len(valid_dataloader): | 
					
						
							|  |  |  |  |                 break | 
					
						
							| 
									
										
										
										
											2020-11-06 18:56:53 +08:00
										 |  |  |  |             images = batch[0] | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |             start = time.time() | 
					
						
							|  |  |  |  |             preds = model(images) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             batch = [item.numpy() for item in batch] | 
					
						
							|  |  |  |  |             # Obtain usable results from post-processing methods | 
					
						
							|  |  |  |  |             post_result = post_process_class(preds, batch[1]) | 
					
						
							|  |  |  |  |             total_time += time.time() - start | 
					
						
							|  |  |  |  |             # Evaluate the results of the current batch | 
					
						
							|  |  |  |  |             eval_class(post_result, batch) | 
					
						
							| 
									
										
										
										
											2020-11-06 18:56:53 +08:00
										 |  |  |  |             pbar.update(1) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |             total_frame += len(images) | 
					
						
							|  |  |  |  |         # Get final metirc,eg. acc or hmean | 
					
						
							|  |  |  |  |         metirc = eval_class.get_metric() | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-06 18:56:53 +08:00
										 |  |  |  |     pbar.close() | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     model.train() | 
					
						
							|  |  |  |  |     metirc['fps'] = total_frame / total_time | 
					
						
							|  |  |  |  |     return metirc | 
					
						
							| 
									
										
										
										
											2020-08-15 21:54:59 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-15 12:39:07 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-15 21:54:59 +08:00
										 |  |  |  | def preprocess(): | 
					
						
							|  |  |  |  |     FLAGS = ArgsParser().parse_args() | 
					
						
							|  |  |  |  |     config = load_config(FLAGS.config) | 
					
						
							|  |  |  |  |     merge_config(FLAGS.opt) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     # check if set use_gpu=True in paddlepaddle cpu version | 
					
						
							|  |  |  |  |     use_gpu = config['Global']['use_gpu'] | 
					
						
							|  |  |  |  |     check_gpu(use_gpu) | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     alg = config['Architecture']['algorithm'] | 
					
						
							|  |  |  |  |     assert alg in [ | 
					
						
							| 
									
										
										
										
											2020-11-12 12:06:46 +08:00
										 |  |  |  |         'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS' | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     ] | 
					
						
							| 
									
										
										
										
											2020-08-15 21:54:59 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |  |     device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu' | 
					
						
							|  |  |  |  |     device = paddle.set_device(device) | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  |     config['Global']['distributed'] = dist.get_world_size() != 1 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     # save_config | 
					
						
							|  |  |  |  |     save_model_dir = config['Global']['save_model_dir'] | 
					
						
							|  |  |  |  |     os.makedirs(save_model_dir, exist_ok=True) | 
					
						
							|  |  |  |  |     with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f: | 
					
						
							|  |  |  |  |         yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False) | 
					
						
							| 
									
										
										
										
											2020-11-05 15:13:36 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-06 19:11:35 +08:00
										 |  |  |  |     logger = get_logger( | 
					
						
							|  |  |  |  |         name='root', log_file='{}/train.log'.format(save_model_dir)) | 
					
						
							| 
									
										
										
										
											2020-11-04 20:43:27 +08:00
										 |  |  |  |     if config['Global']['use_visualdl']: | 
					
						
							|  |  |  |  |         from visualdl import LogWriter | 
					
						
							|  |  |  |  |         vdl_writer_path = '{}/vdl/'.format(save_model_dir) | 
					
						
							|  |  |  |  |         os.makedirs(vdl_writer_path, exist_ok=True) | 
					
						
							|  |  |  |  |         vdl_writer = LogWriter(logdir=vdl_writer_path) | 
					
						
							|  |  |  |  |     else: | 
					
						
							|  |  |  |  |         vdl_writer = None | 
					
						
							|  |  |  |  |     print_dict(config, logger) | 
					
						
							|  |  |  |  |     logger.info('train with paddle {} and device {}'.format(paddle.__version__, | 
					
						
							|  |  |  |  |                                                             device)) | 
					
						
							|  |  |  |  |     return config, device, logger, vdl_writer |