| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  | # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #    http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import fastdeploy as fd | 
					
						
							|  |  |  | import cv2 | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def parse_arguments(): | 
					
						
							|  |  |  |     import argparse | 
					
						
							|  |  |  |     import ast | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         "--det_model", required=True, help="Path of Detection model of PPOCR." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         "--image", type=str, required=True, help="Path of test image file." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--device", | 
					
						
							|  |  |  |         type=str, | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         default="cpu", | 
					
						
							|  |  |  |         help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--device_id", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=0, | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         help="Define which GPU card used to run model.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  |     return parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def build_option(args): | 
					
						
							|  |  |  |     det_option = fd.RuntimeOption() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if args.device.lower() == "gpu": | 
					
						
							|  |  |  |         det_option.use_gpu(args.device_id) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return det_option | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | args = parse_arguments() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | det_model_file = os.path.join(args.det_model, "inference.pdmodel") | 
					
						
							|  |  |  | det_params_file = os.path.join(args.det_model, "inference.pdiparams") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Set the runtime option | 
					
						
							|  |  |  | det_option = build_option(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Create the det_model | 
					
						
							|  |  |  | det_model = fd.vision.ocr.DBDetector( | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     det_model_file, det_params_file, runtime_option=det_option | 
					
						
							|  |  |  | ) | 
					
						
							| 
									
										
										
										
											2023-03-03 14:51:09 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | # Set the preporcessing parameters | 
					
						
							|  |  |  | det_model.preprocessor.max_side_len = 960 | 
					
						
							|  |  |  | det_model.postprocessor.det_db_thresh = 0.3 | 
					
						
							|  |  |  | det_model.postprocessor.det_db_box_thresh = 0.6 | 
					
						
							|  |  |  | det_model.postprocessor.det_db_unclip_ratio = 1.5 | 
					
						
							|  |  |  | det_model.postprocessor.det_db_score_mode = "slow" | 
					
						
							|  |  |  | det_model.postprocessor.use_dilation = False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Read the image | 
					
						
							|  |  |  | im = cv2.imread(args.image) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Predict and return the results | 
					
						
							|  |  |  | result = det_model.predict(im) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | print(result) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Visualize the results | 
					
						
							|  |  |  | vis_im = fd.vision.vis_ppocr(im, result) | 
					
						
							|  |  |  | cv2.imwrite("visualized_result.jpg", vis_im) | 
					
						
							|  |  |  | print("Visualized result save in ./visualized_result.jpg") |