PaddleOCR/docs/version3.x/module_usage/layout_detection.en.md

652 lines
31 KiB
Markdown
Raw Normal View History

---
comments: true
---
# Layout Detection Module Tutorial
## I. Overview
The core task of structure analysis is to parse and segment the content of input document images. By identifying different elements in the image (such as text, charts, images, etc.), they are classified into predefined categories (e.g., pure text area, title area, table area, image area, list area, etc.), and the position and size of these regions in the document are determined.
## II. Supported Model List
* <b>The layout detection model includes 20 common categories: document title, paragraph title, text, page number, abstract, table, references, footnotes, header, footer, algorithm, formula, formula number, image, table, seal, figure_table title, chart, and sidebar text and lists of references</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP-DocLayout_plus-L</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-DocLayout_plus-L_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-DocLayout_plus-L_pretrained.pdparams">Training Model</a></td>
<td>83.2</td>
<td>34.6244 / 10.3945</td>
<td>510.57 / - </td>
<td>126.01 M</td>
<td>A higher-precision layout area localization model trained on a self-built dataset containing Chinese and English papers, PPT, multi-layout magazines, contracts, books, exams, ancient books and research reports using RT-DETR-L</td>
</tr>
<tr>
</tbody>
</table>
* <b>The layout detection model includes 1 category: Block:</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP-DocBlockLayout</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-DocBlockLayout_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-DocBlockLayout_pretrained.pdparams">Training Model</a></td>
<td>95.9</td>
<td>34.6244 / 10.3945</td>
<td>510.57 / - </td>
<td>123.92 M</td>
<td>A layout block localization model trained on a self-built dataset containing Chinese and English papers, PPT, multi-layout magazines, contracts, books, exams, ancient books and research reports using RT-DETR-L</td>
</tr>
<tr>
</tbody>
</table>
* <b>The layout detection model includes 23 common categories: document title, paragraph title, text, page number, abstract, table of contents, references, footnotes, header, footer, algorithm, formula, formula number, image, figure caption, table, table caption, seal, figure title, figure, header image, footer image, and sidebar text</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP-DocLayout-L</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-DocLayout-L_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-DocLayout-L_pretrained.pdparams">Training Model</a></td>
<td>90.4</td>
<td>34.6244 / 10.3945</td>
<td>510.57 / -</td>
<td>123.76 M</td>
<td>A high-precision layout area localization model trained on a self-built dataset containing Chinese and English papers, magazines, contracts, books, exams, and research reports using RT-DETR-L.</td>
</tr>
<tr>
<td>PP-DocLayout-M</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-DocLayout-M_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-DocLayout-M_pretrained.pdparams">Training Model</a></td>
<td>75.2</td>
<td>13.3259 / 4.8685</td>
<td>44.0680 / 44.0680</td>
<td>22.578</td>
<td>A layout area localization model with balanced precision and efficiency, trained on a self-built dataset containing Chinese and English papers, magazines, contracts, books, exams, and research reports using PicoDet-L.</td>
</tr>
<tr>
<td>PP-DocLayout-S</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-DocLayout-S_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-DocLayout-S_pretrained.pdparams">Training Model</a></td>
<td>70.9</td>
<td>8.3008 / 2.3794</td>
<td>10.0623 / 9.9296</td>
<td>4.834</td>
<td>A high-efficiency layout area localization model trained on a self-built dataset containing Chinese and English papers, magazines, contracts, books, exams, and research reports using PicoDet-S.</td>
</tr>
</tbody>
</table>
> ❗ The above list includes the <b>4 core models</b> that are key supported by the text recognition module. The module actually supports a total of <b>12 full models</b>, including several predefined models with different categories. The complete model list is as follows:
<details><summary> 👉 Details of Model List</summary>
* <b>Table Layout Detection Model</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoDet_layout_1x_table</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PicoDet_layout_1x_table_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet_layout_1x_table_pretrained.pdparams">Training Model</a></td>
<td>97.5</td>
<td>8.02 / 3.09</td>
<td>23.70 / 20.41</td>
<td>7.4 M</td>
<td>A high-efficiency layout area localization model trained on a self-built dataset using PicoDet-1x, capable of detecting table regions.</td>
</tr>
</tbody></table>
* <b>3-Class Layout Detection Model, including Table, Image, and Stamp</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoDet-S_layout_3cls</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PicoDet-S_layout_3cls_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet-S_layout_3cls_pretrained.pdparams">Training Model</a></td>
<td>88.2</td>
<td>8.99 / 2.22</td>
<td>16.11 / 8.73</td>
<td>4.8</td>
<td>A high-efficiency layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-S.</td>
</tr>
<tr>
<td>PicoDet-L_layout_3cls</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PicoDet-L_layout_3cls_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet-L_layout_3cls_pretrained.pdparams">Training Model</a></td>
<td>89.0</td>
<td>13.05 / 4.50</td>
<td>41.30 / 41.30</td>
<td>22.6</td>
<td>A balanced efficiency and precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-L.</td>
</tr>
<tr>
<td>RT-DETR-H_layout_3cls</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/RT-DETR-H_layout_3cls_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/RT-DETR-H_layout_3cls_pretrained.pdparams">Training Model</a></td>
<td>95.8</td>
<td>114.93 / 27.71</td>
<td>947.56 / 947.56</td>
<td>470.1</td>
<td>A high-precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using RT-DETR-H.</td>
</tr>
</tbody></table>
* <b>5-Class English Document Area Detection Model, including Text, Title, Table, Image, and List</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoDet_layout_1x</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PicoDet_layout_1x_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet_layout_1x_pretrained.pdparams">Training Model</a></td>
<td>97.8</td>
<td>9.03 / 3.10</td>
<td>25.82 / 20.70</td>
<td>7.4</td>
<td>A high-efficiency English document layout area localization model trained on the PubLayNet dataset using PicoDet-1x.</td>
</tr>
</tbody></table>
* <b>17-Class Area Detection Model, including 17 common layout categories: Paragraph Title, Image, Text, Number, Abstract, Content, Figure Caption, Formula, Table, Table Caption, References, Document Title, Footnote, Header, Algorithm, Footer, and Stamp</b>
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>mAP(0.5) (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (M)</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoDet-S_layout_17cls</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PicoDet-S_layout_17cls_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet-S_layout_17cls_pretrained.pdparams">Training Model</a></td>
<td>87.4</td>
<td>9.11 / 2.12</td>
<td>15.42 / 9.12</td>
<td>4.8</td>
<td>A high-efficiency layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-S.</td>
</tr>
<tr>
<td>PicoDet-L_layout_17cls</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PicoDet-L_layout_17cls_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet-L_layout_17cls_pretrained.pdparams">Training Model</a></td>
<td>89.0</td>
<td>13.50 / 4.69</td>
<td>43.32 / 43.32</td>
<td>22.6</td>
<td>A balanced efficiency and precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-L.</td>
</tr>
<tr>
<td>RT-DETR-H_layout_17cls</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/RT-DETR-H_layout_17cls_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/RT-DETR-H_layout_17cls_pretrained.pdparams">Training Model</a></td>
<td>98.3</td>
<td>115.29 / 104.09</td>
<td>995.27 / 995.27</td>
<td>470.2</td>
<td>A high-precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using RT-DETR-H.</td>
</tr>
</tbody>
</table>
<strong>Test Environment Description:</strong>
<ul>
<li><b>Performance Test Environment</b>
<ul>
<li><strong>Test Dataset</strong>
<ul>
<li>20 types of layout detection models: PaddleOCR's self built layout area detection dataset, including Chinese and English papers, magazines, newspapers, research papers PPT、 1300 images of document types such as test papers and textbooks. </li>
<li>Type 1 version face region detection model: PaddleOCR's self built version face region detection dataset, including Chinese and English papers, magazines, newspapers, research reports PPT、 1000 document type images such as test papers and textbooks. </li>
<li>23 categories Layout Detection Model: A self-built layout area detection dataset by PaddleOCR, containing 500 common document type images such as Chinese and English papers, magazines, contracts, books, exam papers, and research reports.</li>
<li>Table Layout Detection Model: A self-built table area detection dataset by PaddleOCR, including 7,835 Chinese and English paper document type images with tables.</li>
<li> 3-Class Layout Detection Model: A self-built layout area detection dataset by PaddleOCR, comprising 1,154 common document type images such as Chinese and English papers, magazines, and research reports.</li>
<li>5-Class English Document Area Detection Model: The evaluation dataset of <a href="https://developer.ibm.com/exchanges/data/all/publaynet">PubLayNet</a>, containing 11,245 images of English documents.</li>
<li>17-Class Area Detection Model: A self-built layout area detection dataset by PaddleOCR, including 892 common document type images such as Chinese and English papers, magazines, and research reports.</li>
</ul>
</li>
<li><strong>Hardware Configuration</strong>
<ul>
<li>GPU: NVIDIA Tesla T4</li>
<li>CPU: Intel Xeon Gold 6271C @ 2.60GHz</li>
<li>Other Environments: Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2</li>
</ul>
</li>
</ul>
</li>
<li><b>Inference Mode Description</b></li>
</ul>
<table border="1">
<thead>
<tr>
<th>Mode</th>
<th>GPU Configuration </th>
<th>CPU Configuration </th>
<th>Acceleration Technology Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Mode</td>
<td>FP32 Precision / No TRT Acceleration</td>
<td>FP32 Precision / 8 Threads</td>
<td>PaddleInference</td>
</tr>
<tr>
<td>High-Performance Mode</td>
<td>Optimal combination of pre-selected precision types and acceleration strategies</td>
<td>FP32 Precision / 8 Threads</td>
<td>Pre-selected optimal backend (Paddle/OpenVINO/TRT, etc.)</td>
</tr>
</tbody>
</table>
</details>
## III. Quick Integration <a id="quick"> </a>
> ❗ Before quick integration, please install the PaddleOCR wheel package. For detailed instructions, refer to [PaddleOCR Local Installation Tutorial](../installation.en.md)。
Quickly experience with just one command:
```bash
paddleocr layout_detection -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/layout.jpg
```
You can also integrate the model inference from the layout area detection module into your project. Before running the following code, please download [Example Image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/layout.jpg) Go to the local area.
```python
from paddleocr import LayoutDetection
model = LayoutDetection(model_name="PP-DocLayout_plus-L")
output = model.predict("layout.jpg", batch_size=1, layout_nms=True)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")
```
After running, the result obtained is:
```bash
{'res': {'input_path': 'layout.jpg', 'page_index': None, 'boxes': [{'cls_id': 2, 'label': 'text', 'score': 0.9870226979255676, 'coordinate': [34.101906, 349.85275, 358.59213, 611.0772]}, {'cls_id': 2, 'label': 'text', 'score': 0.9866003394126892, 'coordinate': [34.500324, 647.1585, 358.29367, 848.66797]}, {'cls_id': 2, 'label': 'text', 'score': 0.9846674203872681, 'coordinate': [385.71445, 497.40973, 711.2261, 697.84265]}, {'cls_id': 8, 'label': 'table', 'score': 0.984126091003418, 'coordinate': [73.76879, 105.94899, 321.95303, 298.84888]}, {'cls_id': 8, 'label': 'table', 'score': 0.9834211468696594, 'coordinate': [436.95642, 105.81531, 662.7168, 313.48462]}, {'cls_id': 2, 'label': 'text', 'score': 0.9832247495651245, 'coordinate': [385.62787, 346.2288, 710.10095, 458.77127]}, {'cls_id': 2, 'label': 'text', 'score': 0.9816061854362488, 'coordinate': [385.7802, 735.1931, 710.56134, 849.9764]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.9577341079711914, 'coordinate': [34.421448, 20.055151, 358.71283, 76.53663]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.9505634307861328, 'coordinate': [385.72278, 20.053688, 711.29333, 74.92744]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.9001723527908325, 'coordinate': [386.46344, 477.03488, 699.4023, 490.07474]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.8845751285552979, 'coordinate': [35.413048, 627.73596, 185.58383, 640.52264]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.8837394118309021, 'coordinate': [387.17603, 716.3423, 524.7841, 729.258]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.8508939743041992, 'coordinate': [35.50064, 331.18445, 141.6444, 344.81097]}]}}
```
The meanings of the parameters are as follows:
- `input_path`: The path to the input image for prediction.
- `page_index`: If the input is a PDF file, it indicates which page of the PDF it is; otherwise, it is `None`.
- `boxes`: Information about the predicted bounding boxes, a list of dictionaries. Each dictionary represents a detected object and contains the following information:
- `cls_id`: Class ID, an integer.
- `label`: Class label, a string.
- `score`: Confidence score of the bounding box, a float.
- `coordinate`: Coordinates of the bounding box, a list of floats in the format <code>[xmin, ymin, xmax, ymax]</code>.
The visualized image is as follows:
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/modules/layout_det/layout_res_plus.jpg"/>
Relevant methods, parameters, and explanations are as follows:
* `LayoutDetection` instantiates a target detection model (here, `PP-DocLayout_plus-L` is used as an example). The detailed explanation is as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>model_name</code></td>
<td>Model name</td>
<td><code>str</code></td>
<td><code>PP-DocLayout-L</code></td>
</tr>
<tr>
<td><code>model_dir</code></td>
<td>Model storage path</td>
<td><code>str</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>device</code></td>
<td>Device(s) to use for inference.<br/>
<b>Examples:</b> <code>cpu</code>, <code>gpu</code>, <code>npu</code>, <code>gpu:0</code>, <code>gpu:0,1</code>.<br/>
If multiple devices are specified, inference will be performed in parallel. Note that parallel inference is not always supported.<br/>
By default, GPU 0 will be used if available; otherwise, the CPU will be used.
</td>
<td><code>str</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>enable_hpi</code></td>
<td>Whether to use the high performance inference.</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>use_tensorrt</code></td>
<td>Whether to use the Paddle Inference TensorRT subgraph engine.</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>min_subgraph_size</code></td>
<td>Minimum subgraph size for TensorRT when using the Paddle Inference TensorRT subgraph engine.</td>
<td><code>int</code></td>
<td><code>3</code></td>
</tr>
<tr>
<td><code>precision</code></td>
<td>Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.<br/><b>Options:</b> <code>fp32</code>, <code>fp16</code>, etc.</td>
<td><code>str</code></td>
<td><code>fp32</code></td>
</tr>
<tr>
<td><code>enable_mkldnn</code></td>
<td>
Whether to use MKL-DNN acceleration for inference.
</td>
<td><code>bool</code></td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>cpu_threads</code></td>
<td>Number of threads to use for inference on CPUs.</td>
<td><code>int</code></td>
<td><code>10</code></td>
</tr>
<tr>
<td><code>img_size</code></td>
<td>Input image size; if not specified, the default 800x800 will be used by PP-DocLayout_plus-L<br/><b>Examples:</b>
<ul>
<li><b>int</b>: e.g. 640, resizes input image to 640x640</li>
<li><b>list</b>: e.g. [640, 512], resizes input image to 640 width and 512 height</li>
<li><b>None</b>: not specified, defaults to 800x800</li>
</ul>
</td>
<td><code>int/list/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>threshold</code></td>
<td>Threshold for filtering low-confidence predictions; defaults to 0.5 if not specified<br/><b>Examples:</b>
<ul>
<li><b>float</b>: e.g. 0.2, filters out all boxes with confidence below 0.2</li>
<li><b>dict</b>: key is <code>int</code> cls_id, value is<code>float</code> threshold, e.g. <code>{0: 0.45, 2: 0.48, 7: 0.4}</code></li>
<li><b>None</b>: not specified, defaults to PaddleOCR model config</li>
</ul>
</td>
<td><code>float/dict/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>layout_nms</code></td>
<td>Whether to use NMS post-processing to filter overlapping boxes; if not specified, the default PaddleOCR official model configuration will be used<br/><b>Examples:</b>
<ul>
<li><b>bool</b>: indicates whether to use NMS for post-processing to filter overlapping boxes</li>
<li><b>None</b>: not specified, will use the default PaddleOCR official model configuration</li>
</ul>
</td>
<td><code>bool/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>layout_unclip_ratio</code></td>
<td>Scaling factor for the side length of the detection box; if not specified, the default PaddleX official model configuration will be used<br/><b>Examples:</b>
<ul>
<li><b>float</b>: a float greater than 0, e.g. 1.1, expands width and height of the box by 1.1 times</li>
<li><b>list</b>: e.g. [1.2, 1.5], expands width by 1.2x and height by 1.5x</li>
<li><b>dict</b>: key is <code>int</code> cls_id, value is<code>tuple</code>, e.g. <code>{0: (1.1, 2.0)}</code></li>
<li><b>None</b>: not specified, will use the default PaddleOCR official model configuration</li>
</ul>
</td>
<td><code>float/list/dict/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>layout_merge_bboxes_mode</code></td>
<td>Bounding box merge mode for model output; ; if not specified, the default PaddleOCR official model configuration will be used.<br/><b>Examples:</b>
<ul>
<li><b>large</b>: keep the largest outer box, remove inner overlapping boxes</li>
<li><b>small</b>: keep the smallest inner box, remove outer overlapping boxes</li>
<li><b>union</b>: keep all boxes, no filtering</li>
<li><b>dict</b>: key is <code>int</code> cls_id, value is<code>str</code>, e.g. <code>{0: "large", 2: "small"}</code></li>
<li><b>None</b>:not specified, will use the default PaddleOCR official model configuration.</li>
</ul>
</td>
<td><code>string/dict/None</code></td>
<td>None</td>
</tr>
</tbody>
</table>
* Note that `model_name` must be specified. After specifying `model_name`, the default PaddleX built-in model parameters will be used. If `model_dir` is specified, the user-defined model will be used.
* The `predict()` method of the target detection model is called for inference prediction. The parameters of the `predict()` method are `input`, `batch_size`, and `threshold`, which are explained as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tr>
<td><code>input</code></td>
<td>Input data to be predicted. Required. Supports multiple input types:
<ul>
<li><b>Python Var</b>: e.g., <code>numpy.ndarray</code> representing image data</li>
<li><b>str</b>:
- Local image or PDF file path: <code>/root/data/img.jpg</code>;
- <b>URL</b> of image or PDF file: e.g., <a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/img_rot180_demo.jpg">example</a>;
- <b>Local directory</b>: directory containing images for prediction, e.g., <code>/root/data/</code> (Note: directories containing PDF files are not supported; PDFs must be specified by exact file path)</li>
<li><b>List</b>: Elements must be of the above types, e.g., <code>[numpy.ndarray, numpy.ndarray]</code>, <code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>, <code>["/root/data1", "/root/data2"]</code></li>
</ul>
</td>
<td><code>Python Var|str|list</code></td>
<td></td>
</tr>
<tr>
<td><code>batch_size</code></td>
<td>Batch size, positive integer.</td>
<td><code>int</code></td>
<td>1</td>
</tr>
<tr>
<td><code>threshold</code></td>
<td>Threshold for filtering low-confidence predictions. If not specified, the model's default will be used.<br/><b>Examples:</b>
<ul>
<li><b>float</b>: e.g., 0.2, filters out all boxes with scores below 0.2</li>
<li><b>dict</b>: keys are <code>int</code> representing <code>cls_id</code>, and values are <code>float</code> thresholds. For example, <code>{0: 0.45, 2: 0.48, 7: 0.4}</code> applies thresholds of 0.45 to class 0, 0.48 to class 2, and 0.4 to class 7</li>
<li><b>None</b>: if not specified, defaults to 0.5</li>
</ul>
</td>
<td><code>float/dict/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>layout_nms</code></td>
<td>Whether to use NMS post-processing to filter overlapping boxes<br/><b>Examples:</b>
<ul>
<li><b>bool</b>: True/False, whether to apply NMS to filter overlapping detection boxes</li>
<li><b>None</b>: if not specified, uses the <code>layout_nms</code> value from <code>creat_model</code>; if that is also not set, NMS will not be used by default</li>
</ul>
</td>
<td><code>bool/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>layout_unclip_ratio</code></td>
<td>Scaling ratio for the detected box size. If not specified, defaults to 1.0<br/><b>Examples:</b>
<ul>
<li><b>float</b>:a positive float number, e.g., 1.1, means expanding the width and height of the detection box by 1.1 times while keeping the center unchanged</li>
<li><b>list</b>: e.g., [1.2, 1.5], means expanding the width by 1.2 times and the height by 1.5 times while keeping the center unchanged</li>
<li><b>dict</b>: keys are <code>int</code> representing <code>cls_id</code>, values are <code>tuple</code>, e.g., <code>{0: (1.1, 2.0)}</code> means cls_id 0 expanding the width by 1.1 times and the height by 2.0 times while keeping the center unchanged</li>
<li><b>None</b>: if not specified, defaults to 1.0</li>
</ul>
</td>
<td><code>float/list/dict/None</code></td>
<td>None</td>
</tr>
<tr>
<td><code>layout_merge_bboxes_mode</code></td>
<td>Merge mode for detected bounding boxes. Defaults to <code>union</code> if not specified<br/><b>Examples:</b>
<ul>
<li><b>large</b>: keeps only the largest outer box when overlapping/contained boxes exist</li>
<li><b>small</b>: keeps only the smallest inner box when overlapping/contained boxes exist</li>
<li><b>union</b>: no filtering, keeps all overlapping boxes</li>
<li><b>dict</b>: keys are <code>int</code> <code>cls_id</code>, values are <code>str</code>, e.g., <code>{0: "large", 2: "small"}</code> applies different merge modes to different classes</li>
<li><b>None</b>: if not specified, defaults to <code>union</code></li>
</ul>
</td>
<td><code>string/dict/None</code></td>
<td>None</td>
</tr>
</tbody>
</table>
<p><sup></sup> If <code>None</code> is passed to <code>predict()</code>, the value set during model instantiation (<code>__init__</code>) will be used; if it was also <code>None</code> there, the framework defaults are applied:<br>
&nbsp;&nbsp;&nbsp;&nbsp;<code>threshold=0.5</code>, <code>layout_nms=False</code>, <code>layout_unclip_ratio=1.0</code>, <code>layout_merge_bboxes_mode="union"</code>.</p>
* Process the prediction results, with each sample's prediction result being the corresponding Result object, and supporting operations such as printing, saving as an image, and saving as a 'json' file:
<table>
<thead>
<tr>
<th>Method</th>
<th>Method Description</th>
<th>Parameters</th>
<th>Parameter type</th>
<th>Parameter Description</th>
<th>Default value</th>
</tr>
</thead>
<tr>
<td rowspan="3"><code>print()</code></td>
<td rowspan="3">Print the result to the terminal</td>
<td><code>format_json</code></td>
<td><code>bool</code></td>
<td>Do you want to use <code>JSON</code> indentation formatting for the output content</td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specify the indentation level to enhance the readability of the <code>JSON</code> data output, only valid when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Control whether to escape non ASCII characters to Unicode characters. When set to <code>True</code>, all non ASCII </code>characters will be escaped; <code>False</code> preserves the original characters and is only valid when <code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td rowspan="3"><code>save_to_json()</code></td>
<td rowspan="3">Save the result as a JSON format file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The saved file path, when it is a directory, the name of the saved file is consistent with the name of the input file type</td>
<td>None</td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specify the indentation level to enhance the readability of the <code>JSON</code> data output, only valid when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Control whether to escape non ASCII characters to Unicode characters. When set to <code>True</code>, all non <code>ASCII</code> characters will be escaped; <code>False</code> preserves the original characters and is only valid when<code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>save_to_img()</code></td>
<td>Save the results as an image format file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The saved file path, when it is a directory, the name of the saved file is consistent with the name of the input file type</td>
<td>None</td>
</tr>
</table>
* Additionally, it also supports obtaining the visualized image with results and the prediction results via attributes, as follows:
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tr>
<td rowspan="1"><code>json</code></td>
<td rowspan="1">Get the prediction result in <code>json</code> format</td>
</tr>
<tr>
<td rowspan="1"><code>img</code></td>
<td rowspan="1">Get the visualized image in <code>dict</code> format</td>
</tr>
</table>
## IV. Custom Development
Since PaddleOCR does not directly provide training for the layout detection module, if you need to train the layout area detection model, you can refer to [PaddleX Layout Detection Module Secondary Development](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/layout_detection.html#iv-custom-development)Partially conduct training. The trained model can be seamlessly integrated into PaddleOCR's API for inference.
## V. FAQ