mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-18 14:31:42 +00:00
130 lines
4.3 KiB
Python
130 lines
4.3 KiB
Python
![]() |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os, sys
|
||
|
|
||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
|
sys.path.append(__dir__)
|
||
|
sys.path.append('/home/zhoujun20/PaddleOCR')
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from ppocr.modeling.transform import build_transform
|
||
|
from ppocr.modeling.backbones import build_backbone
|
||
|
from ppocr.modeling.necks import build_neck
|
||
|
from ppocr.modeling.heads import build_head
|
||
|
|
||
|
__all__ = ['Model']
|
||
|
|
||
|
|
||
|
class Model(nn.Layer):
|
||
|
def __init__(self, config):
|
||
|
"""
|
||
|
Detection module for OCR.
|
||
|
args:
|
||
|
config (dict): the super parameters for module.
|
||
|
"""
|
||
|
super(Model, self).__init__()
|
||
|
algorithm = config['algorithm']
|
||
|
self.type = config['type']
|
||
|
self.model_name = '{}_{}'.format(self.type, algorithm)
|
||
|
|
||
|
in_channels = config.get('in_channels', 3)
|
||
|
# build transfrom,
|
||
|
# for rec, transfrom can be TPS,None
|
||
|
# for det and cls, transfrom shoule to be None,
|
||
|
# if you make model differently, you can use transfrom in det and cls
|
||
|
if 'Transform' not in config or config['Transform'] is None:
|
||
|
self.use_transform = False
|
||
|
else:
|
||
|
self.use_transform = True
|
||
|
config['Transform']['in_channels'] = in_channels
|
||
|
self.transform = build_transform(config['Transform'])
|
||
|
in_channels = self.transform.out_channels
|
||
|
|
||
|
# build backbone, backbone is need for del, rec and cls
|
||
|
config["Backbone"]['in_channels'] = in_channels
|
||
|
self.backbone = build_backbone(config["Backbone"], self.type)
|
||
|
in_channels = self.backbone.out_channels
|
||
|
|
||
|
# build neck
|
||
|
# for rec, neck can be cnn,rnn or reshape(None)
|
||
|
# for det, neck can be FPN, BIFPN and so on.
|
||
|
# for cls, neck should be none
|
||
|
if 'Neck' not in config or config['Neck'] is None:
|
||
|
self.use_neck = False
|
||
|
else:
|
||
|
self.use_neck = True
|
||
|
config['Neck']['in_channels'] = in_channels
|
||
|
self.neck = build_neck(config['Neck'])
|
||
|
in_channels = self.neck.out_channels
|
||
|
|
||
|
# # build head, head is need for del, rec and cls
|
||
|
config["Head"]['in_channels'] = in_channels
|
||
|
self.head = build_head(config["Head"])
|
||
|
|
||
|
# @paddle.jit.to_static
|
||
|
def forward(self, x):
|
||
|
if self.use_transform:
|
||
|
x = self.transform(x)
|
||
|
x = self.backbone(x)
|
||
|
if self.use_neck:
|
||
|
x = self.neck(x)
|
||
|
x = self.head(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def check_static():
|
||
|
import numpy as np
|
||
|
from ppocr.utils.save_load import load_dygraph_pretrain
|
||
|
from ppocr.utils.logging import get_logger
|
||
|
from tools import program
|
||
|
|
||
|
config = program.load_config('configs/det/det_r50_vd_db.yml')
|
||
|
|
||
|
# import cv2
|
||
|
# data = cv2.imread('doc/imgs/1.jpg')
|
||
|
# data = normalize(data)
|
||
|
logger = get_logger()
|
||
|
data = np.zeros((1, 3, 640, 640), dtype=np.float32)
|
||
|
paddle.disable_static()
|
||
|
|
||
|
config['Architecture']['in_channels'] = 3
|
||
|
config['Architecture']["Head"]['out_channels'] = 6624
|
||
|
model = Model(config['Architecture'])
|
||
|
model.eval()
|
||
|
load_dygraph_pretrain(
|
||
|
model,
|
||
|
logger,
|
||
|
'/Users/zhoujun20/Desktop/code/PaddleOCR/db/db',
|
||
|
load_static_weights=True)
|
||
|
x = paddle.to_variable(data)
|
||
|
y = model(x)
|
||
|
for y1 in y:
|
||
|
print(y1.shape)
|
||
|
#
|
||
|
# # from matplotlib import pyplot as plt
|
||
|
# # plt.imshow(y.numpy())
|
||
|
# # plt.show()
|
||
|
static_out = np.load('/Users/zhoujun20/Desktop/code/PaddleOCR/db/db.npy')
|
||
|
diff = y.numpy() - static_out
|
||
|
print(y.shape, static_out.shape, diff.mean())
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
check_static()
|