mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-13 12:00:44 +00:00
66 lines
2.3 KiB
Python
66 lines
2.3 KiB
Python
![]() |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import nn
|
||
|
from ppocr.modeling.transforms import build_transform
|
||
|
from ppocr.modeling.backbones import build_backbone
|
||
|
from ppocr.modeling.necks import build_neck
|
||
|
from ppocr.modeling.heads import build_head
|
||
|
from .base_model import BaseModel
|
||
|
from ppocr.utils.save_load import load_dygraph_pretrain
|
||
|
|
||
|
__all__ = ['DistillationModel']
|
||
|
|
||
|
|
||
|
class DistillationModel(nn.Layer):
|
||
|
def __init__(self, config):
|
||
|
"""
|
||
|
the module for OCR distillation.
|
||
|
args:
|
||
|
config (dict): the super parameters for module.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
|
||
|
freeze_params = config["freeze_params"]
|
||
|
pretrained = config["pretrained"]
|
||
|
if not isinstance(freeze_params, list):
|
||
|
freeze_params = [freeze_params]
|
||
|
assert len(config["Models"]) == len(freeze_params)
|
||
|
|
||
|
if not isinstance(pretrained, list):
|
||
|
pretrained = [pretrained] * len(config["Models"])
|
||
|
assert len(config["Models"]) == len(pretrained)
|
||
|
|
||
|
self.model_dict = dict()
|
||
|
index = 0
|
||
|
for key in config["Models"]:
|
||
|
model_config = config["Models"][key]
|
||
|
model = BaseModel(model_config)
|
||
|
if pretrained[index] is not None:
|
||
|
load_dygraph_pretrain(model, path=pretrained[index])
|
||
|
if freeze_params[index]:
|
||
|
for param in model.parameters():
|
||
|
param.trainable = False
|
||
|
self.model_dict[key] = self.add_sublayer(key, model)
|
||
|
index += 1
|
||
|
|
||
|
def forward(self, x):
|
||
|
result_dict = dict()
|
||
|
for key in self.model_dict:
|
||
|
result_dict[key] = self.model_dict[key](x)
|
||
|
return result_dict
|