| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #    http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import paddle | 
					
						
							|  |  |  | from paddle import nn | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  | import numpy as np | 
					
						
							|  |  |  | import cv2 | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | __all__ = ["Kie_backbone"] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Encoder(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, num_channels, num_filters): | 
					
						
							|  |  |  |         super(Encoder, self).__init__() | 
					
						
							|  |  |  |         self.conv1 = nn.Conv2D( | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |             num_channels, | 
					
						
							|  |  |  |             num_filters, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=1, | 
					
						
							|  |  |  |             bias_attr=False) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         self.bn1 = nn.BatchNorm(num_filters, act='relu') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.conv2 = nn.Conv2D( | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |             num_filters, | 
					
						
							|  |  |  |             num_filters, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=1, | 
					
						
							|  |  |  |             bias_attr=False) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         self.bn2 = nn.BatchNorm(num_filters, act='relu') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         x = self.conv1(inputs) | 
					
						
							|  |  |  |         x = self.bn1(x) | 
					
						
							|  |  |  |         x = self.conv2(x) | 
					
						
							|  |  |  |         x = self.bn2(x) | 
					
						
							|  |  |  |         x_pooled = self.pool(x) | 
					
						
							|  |  |  |         return x, x_pooled | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Decoder(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, num_channels, num_filters): | 
					
						
							|  |  |  |         super(Decoder, self).__init__() | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         self.conv1 = nn.Conv2D( | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |             num_channels, | 
					
						
							|  |  |  |             num_filters, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=1, | 
					
						
							|  |  |  |             bias_attr=False) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         self.bn1 = nn.BatchNorm(num_filters, act='relu') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.conv2 = nn.Conv2D( | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |             num_filters, | 
					
						
							|  |  |  |             num_filters, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=1, | 
					
						
							|  |  |  |             bias_attr=False) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         self.bn2 = nn.BatchNorm(num_filters, act='relu') | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         self.conv0 = nn.Conv2D( | 
					
						
							|  |  |  |             num_channels, | 
					
						
							|  |  |  |             num_filters, | 
					
						
							|  |  |  |             kernel_size=1, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             padding=0, | 
					
						
							|  |  |  |             bias_attr=False) | 
					
						
							|  |  |  |         self.bn0 = nn.BatchNorm(num_filters, act='relu') | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |     def forward(self, inputs_prev, inputs): | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         x = self.conv0(inputs) | 
					
						
							|  |  |  |         x = self.bn0(x) | 
					
						
							|  |  |  |         x = paddle.nn.functional.interpolate( | 
					
						
							|  |  |  |             x, scale_factor=2, mode='bilinear', align_corners=False) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         x = paddle.concat([inputs_prev, x], axis=1) | 
					
						
							|  |  |  |         x = self.conv1(x) | 
					
						
							|  |  |  |         x = self.bn1(x) | 
					
						
							|  |  |  |         x = self.conv2(x) | 
					
						
							|  |  |  |         x = self.bn2(x) | 
					
						
							|  |  |  |         return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class UNet(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self): | 
					
						
							|  |  |  |         super(UNet, self).__init__() | 
					
						
							|  |  |  |         self.down1 = Encoder(num_channels=3, num_filters=16) | 
					
						
							|  |  |  |         self.down2 = Encoder(num_channels=16, num_filters=32) | 
					
						
							|  |  |  |         self.down3 = Encoder(num_channels=32, num_filters=64) | 
					
						
							|  |  |  |         self.down4 = Encoder(num_channels=64, num_filters=128) | 
					
						
							|  |  |  |         self.down5 = Encoder(num_channels=128, num_filters=256) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.up1 = Decoder(32, 16) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         self.up2 = Decoder(64, 32) | 
					
						
							|  |  |  |         self.up3 = Decoder(128, 64) | 
					
						
							|  |  |  |         self.up4 = Decoder(256, 128) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         self.out_channels = 16 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         x1, _ = self.down1(inputs) | 
					
						
							|  |  |  |         _, x2 = self.down2(x1) | 
					
						
							|  |  |  |         _, x3 = self.down3(x2) | 
					
						
							|  |  |  |         _, x4 = self.down4(x3) | 
					
						
							|  |  |  |         _, x5 = self.down5(x4) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         x = self.up4(x4, x5) | 
					
						
							|  |  |  |         x = self.up3(x3, x) | 
					
						
							|  |  |  |         x = self.up2(x2, x) | 
					
						
							|  |  |  |         x = self.up1(x1, x) | 
					
						
							|  |  |  |         return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Kie_backbone(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, in_channels, **kwargs): | 
					
						
							|  |  |  |         super(Kie_backbone, self).__init__() | 
					
						
							|  |  |  |         self.out_channels = 16 | 
					
						
							|  |  |  |         self.img_feat = UNet() | 
					
						
							|  |  |  |         self.maxpool = nn.MaxPool2D(kernel_size=7) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def bbox2roi(self, bbox_list): | 
					
						
							|  |  |  |         rois_list = [] | 
					
						
							|  |  |  |         rois_num = [] | 
					
						
							|  |  |  |         for img_id, bboxes in enumerate(bbox_list): | 
					
						
							|  |  |  |             rois_num.append(bboxes.shape[0]) | 
					
						
							|  |  |  |             rois_list.append(bboxes) | 
					
						
							|  |  |  |         rois = paddle.concat(rois_list, 0) | 
					
						
							|  |  |  |         rois_num = paddle.to_tensor(rois_num, dtype='int32') | 
					
						
							|  |  |  |         return rois, rois_num | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |     def pre_process(self, img, relations, texts, gt_bboxes, tag, img_size): | 
					
						
							|  |  |  |         img, relations, texts, gt_bboxes, tag, img_size = img.numpy( | 
					
						
							|  |  |  |         ), relations.numpy(), texts.numpy(), gt_bboxes.numpy(), tag.numpy( | 
					
						
							|  |  |  |         ).tolist(), img_size.numpy() | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         temp_relations, temp_texts, temp_gt_bboxes = [], [], [] | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         h, w = int(np.max(img_size[:, 0])), int(np.max(img_size[:, 1])) | 
					
						
							|  |  |  |         img = paddle.to_tensor(img[:, :, :h, :w]) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         batch = len(tag) | 
					
						
							|  |  |  |         for i in range(batch): | 
					
						
							|  |  |  |             num, recoder_len = tag[i][0], tag[i][1] | 
					
						
							|  |  |  |             temp_relations.append( | 
					
						
							|  |  |  |                 paddle.to_tensor( | 
					
						
							|  |  |  |                     relations[i, :num, :num, :], dtype='float32')) | 
					
						
							|  |  |  |             temp_texts.append( | 
					
						
							|  |  |  |                 paddle.to_tensor( | 
					
						
							|  |  |  |                     texts[i, :num, :recoder_len], dtype='float32')) | 
					
						
							|  |  |  |             temp_gt_bboxes.append( | 
					
						
							|  |  |  |                 paddle.to_tensor( | 
					
						
							|  |  |  |                     gt_bboxes[i, :num, ...], dtype='float32')) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         return img, temp_relations, temp_texts, temp_gt_bboxes | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-11 02:35:26 +00:00
										 |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         img = inputs[0] | 
					
						
							|  |  |  |         relations, texts, gt_bboxes, tag, img_size = inputs[1], inputs[ | 
					
						
							|  |  |  |             2], inputs[3], inputs[5], inputs[-1] | 
					
						
							| 
									
										
										
										
											2021-10-09 15:50:52 +08:00
										 |  |  |         img, relations, texts, gt_bboxes = self.pre_process( | 
					
						
							|  |  |  |             img, relations, texts, gt_bboxes, tag, img_size) | 
					
						
							| 
									
										
										
										
											2021-10-09 15:40:25 +08:00
										 |  |  |         x = self.img_feat(img) | 
					
						
							|  |  |  |         boxes, rois_num = self.bbox2roi(gt_bboxes) | 
					
						
							|  |  |  |         feats = paddle.fluid.layers.roi_align( | 
					
						
							|  |  |  |             x, | 
					
						
							|  |  |  |             boxes, | 
					
						
							|  |  |  |             spatial_scale=1.0, | 
					
						
							|  |  |  |             pooled_height=7, | 
					
						
							|  |  |  |             pooled_width=7, | 
					
						
							|  |  |  |             rois_num=rois_num) | 
					
						
							|  |  |  |         feats = self.maxpool(feats).squeeze(-1).squeeze(-1) | 
					
						
							|  |  |  |         return [relations, texts, feats] |