| 
									
										
										
										
											2021-06-16 08:47:33 +00:00
										 |  |  | # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #     http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | import sys | 
					
						
							|  |  |  | import json | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | __dir__ = os.path.dirname(os.path.abspath(__file__)) | 
					
						
							|  |  |  | sys.path.append(__dir__) | 
					
						
							|  |  |  | sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import paddle | 
					
						
							|  |  |  | from paddle.jit import to_static | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from ppocr.data import create_operators, transform | 
					
						
							|  |  |  | from ppocr.modeling.architectures import build_model | 
					
						
							|  |  |  | from ppocr.postprocess import build_post_process | 
					
						
							|  |  |  | from ppocr.utils.save_load import init_model | 
					
						
							|  |  |  | from ppocr.utils.utility import get_image_file_list | 
					
						
							|  |  |  | import tools.program as program | 
					
						
							|  |  |  | import cv2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(config, device, logger, vdl_writer): | 
					
						
							|  |  |  |     global_config = config['Global'] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # build post process | 
					
						
							|  |  |  |     post_process_class = build_post_process(config['PostProcess'], | 
					
						
							|  |  |  |                                             global_config) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # build model | 
					
						
							|  |  |  |     if hasattr(post_process_class, 'character'): | 
					
						
							|  |  |  |         config['Architecture']["Head"]['out_channels'] = len( | 
					
						
							|  |  |  |             getattr(post_process_class, 'character')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     model = build_model(config['Architecture']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     init_model(config, model, logger) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # create data ops | 
					
						
							|  |  |  |     transforms = [] | 
					
						
							|  |  |  |     use_padding = False | 
					
						
							|  |  |  |     for op in config['Eval']['dataset']['transforms']: | 
					
						
							|  |  |  |         op_name = list(op)[0] | 
					
						
							|  |  |  |         if 'Label' in op_name: | 
					
						
							|  |  |  |             continue | 
					
						
							|  |  |  |         if op_name == 'KeepKeys': | 
					
						
							|  |  |  |             op[op_name]['keep_keys'] = ['image'] | 
					
						
							|  |  |  |         if op_name == "ResizeTableImage": | 
					
						
							|  |  |  |             use_padding = True | 
					
						
							|  |  |  |             padding_max_len = op['ResizeTableImage']['max_len'] | 
					
						
							|  |  |  |         transforms.append(op) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     global_config['infer_mode'] = True | 
					
						
							|  |  |  |     ops = create_operators(transforms, global_config) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     for file in get_image_file_list(config['Global']['infer_img']): | 
					
						
							|  |  |  |         logger.info("infer_img: {}".format(file)) | 
					
						
							|  |  |  |         with open(file, 'rb') as f: | 
					
						
							|  |  |  |             img = f.read() | 
					
						
							|  |  |  |             data = {'image': img} | 
					
						
							|  |  |  |         batch = transform(data, ops) | 
					
						
							|  |  |  |         images = np.expand_dims(batch[0], axis=0) | 
					
						
							|  |  |  |         images = paddle.to_tensor(images) | 
					
						
							| 
									
										
										
										
											2021-06-22 03:32:00 +00:00
										 |  |  |         preds = model(images) | 
					
						
							| 
									
										
										
										
											2021-06-16 08:47:33 +00:00
										 |  |  |         post_result = post_process_class(preds) | 
					
						
							|  |  |  |         res_html_code = post_result['res_html_code'] | 
					
						
							|  |  |  |         res_loc = post_result['res_loc'] | 
					
						
							|  |  |  |         img = cv2.imread(file) | 
					
						
							|  |  |  |         imgh, imgw = img.shape[0:2] | 
					
						
							|  |  |  |         res_loc_final = [] | 
					
						
							|  |  |  |         for rno in range(len(res_loc[0])): | 
					
						
							|  |  |  |             x0, y0, x1, y1 = res_loc[0][rno] | 
					
						
							|  |  |  |             left = max(int(imgw * x0), 0) | 
					
						
							|  |  |  |             top = max(int(imgh * y0), 0) | 
					
						
							|  |  |  |             right = min(int(imgw * x1), imgw - 1) | 
					
						
							|  |  |  |             bottom = min(int(imgh * y1), imgh - 1) | 
					
						
							|  |  |  |             cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2) | 
					
						
							|  |  |  |             res_loc_final.append([left, top, right, bottom]) | 
					
						
							|  |  |  |         res_loc_str = json.dumps(res_loc_final) | 
					
						
							|  |  |  |         logger.info("result: {}, {}".format(res_html_code, res_loc_final)) | 
					
						
							|  |  |  |     logger.info("success!") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |     config, device, logger, vdl_writer = program.preprocess() | 
					
						
							|  |  |  |     main(config, device, logger, vdl_writer) | 
					
						
							|  |  |  | 
 |