mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-04 15:40:53 +00:00
62 lines
2.0 KiB
Markdown
62 lines
2.0 KiB
Markdown
![]() |
---
|
|||
|
typora-copy-images-to: images
|
|||
|
comments: true
|
|||
|
---
|
|||
|
|
|||
|
# DRRG
|
|||
|
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
论文信息:
|
|||
|
> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493)
|
|||
|
> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng
|
|||
|
> CVPR, 2020
|
|||
|
|
|||
|
在CTW1500文本检测公开数据集上,算法复现效果如下:
|
|||
|
|
|||
|
| 模型 |骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
|||
|
|-----| --- | --- | --- | --- | --- | --- |
|
|||
|
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw_train.tar)|
|
|||
|
|
|||
|
## 2. 环境配置
|
|||
|
|
|||
|
请先参考[《运行环境准备》](../../ppocr/environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](../../ppocr/blog/clone.md)克隆项目代码。
|
|||
|
|
|||
|
## 3. 模型训练、评估、预测
|
|||
|
|
|||
|
上述DRRG模型使用CTW1500文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](../../datasets/ocr_datasets.md)。
|
|||
|
|
|||
|
数据下载完成后,请参考[文本检测训练教程](../../ppocr/model_train/detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
|
|||
|
|
|||
|
## 4. 推理部署
|
|||
|
|
|||
|
### 4.1 Python推理
|
|||
|
|
|||
|
由于模型前向运行时需要多次转换为Numpy数据进行运算,因此DRRG的动态图转静态图暂未支持。
|
|||
|
|
|||
|
### 4.2 C++推理
|
|||
|
|
|||
|
暂未支持
|
|||
|
|
|||
|
### 4.3 Serving服务化部署
|
|||
|
|
|||
|
暂未支持
|
|||
|
|
|||
|
### 4.4 更多推理部署
|
|||
|
|
|||
|
暂未支持
|
|||
|
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
```bibtex
|
|||
|
@inproceedings{zhang2020deep,
|
|||
|
title={Deep relational reasoning graph network for arbitrary shape text detection},
|
|||
|
author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng},
|
|||
|
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
|||
|
pages={9699--9708},
|
|||
|
year={2020}
|
|||
|
}
|
|||
|
```
|