mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-03 07:03:53 +00:00
94 lines
3.4 KiB
Markdown
94 lines
3.4 KiB
Markdown
![]() |
---
|
||
|
comments: true
|
||
|
---
|
||
|
|
||
|
# SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition
|
||
|
|
||
|
## 1. Introduction
|
||
|
|
||
|
Paper:
|
||
|
> [SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition](https://arxiv.org/abs/2005.13117)
|
||
|
> Chengwei Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Fei Wu, Futai Zou
|
||
|
> AAAI, 2020
|
||
|
|
||
|
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets. The algorithm reproduction effect is as follows:
|
||
|
|
||
|
|Model|Backbone|config|Acc|Download link|
|
||
|
| --- | --- | --- | --- | --- |
|
||
|
|SPIN|ResNet32|[rec_r32_gaspin_bilstm_att.yml](../../configs/rec/rec_r32_gaspin_bilstm_att.yml)|90.00%|[trained model](https://paddleocr.bj.bcebos.com/contribution/rec_r32_gaspin_bilstm_att.tar) |
|
||
|
|
||
|
## 2. Environment
|
||
|
|
||
|
Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code.
|
||
|
|
||
|
## 3. Model Training / Evaluation / Prediction
|
||
|
|
||
|
Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||
|
|
||
|
### Training
|
||
|
|
||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||
|
|
||
|
```bash linenums="1"
|
||
|
# Single GPU training (long training period, not recommended)
|
||
|
python3 tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
|
||
|
|
||
|
# Multi GPU training, specify the gpu number through the --gpus parameter
|
||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
|
||
|
```
|
||
|
|
||
|
### Evaluation
|
||
|
|
||
|
```bash linenums="1"
|
||
|
# GPU evaluation
|
||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||
|
```
|
||
|
|
||
|
### Prediction
|
||
|
|
||
|
```bash linenums="1"
|
||
|
# The configuration file used for prediction must match the training
|
||
|
python3 tools/infer_rec.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||
|
```
|
||
|
|
||
|
## 4. Inference and Deployment
|
||
|
|
||
|
### 4.1 Python Inference
|
||
|
|
||
|
First, the model saved during the SPIN text recognition training process is converted into an inference model. you can use the following command to convert:
|
||
|
|
||
|
```bash linenums="1"
|
||
|
python3 tools/export_model.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r32_gaspin_bilstm_att
|
||
|
```
|
||
|
|
||
|
For SPIN text recognition model inference, the following commands can be executed:
|
||
|
|
||
|
```bash linenums="1"
|
||
|
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r32_gaspin_bilstm_att/" --rec_image_shape="3, 32, 100" --rec_algorithm="SPIN" --rec_char_dict_path="/ppocr/utils/dict/spin_dict.txt" --use_space_char=False
|
||
|
```
|
||
|
|
||
|
### 4.2 C++ Inference
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
### 4.3 Serving
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
### 4.4 More
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
## 5. FAQ
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```bibtex
|
||
|
@article{2020SPIN,
|
||
|
title={SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition},
|
||
|
author={Chengwei Zhang and Yunlu Xu and Zhanzhan Cheng and Shiliang Pu and Yi Niu and Fei Wu and Futai Zou},
|
||
|
journal={AAAI2020},
|
||
|
year={2020},
|
||
|
}
|
||
|
```
|