The text line orientation classification module primarily distinguishes the orientation of text lines and corrects them using post-processing. In processes such as document scanning and license/certificate photography, to capture clearer images, the capture device may be rotated, resulting in text lines in various orientations. Standard OCR pipelines cannot handle such data well. By utilizing image classification technology, the orientation of text lines can be predetermined and adjusted, thereby enhancing the accuracy of OCR processing.
> ❗ **Note**: The text line orientation classification model was upgraded on May 26, 2025, and `PP-LCNet_x1_0_textline_ori` has been added. If you need to use the pre-upgrade model weights, please click the <a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-LCNet_x0_25_textline_ori_infer.bak.tar">download link</a>.
> ❗ Before starting, please install the wheel package of PaddleOCR. For detailed instructions, refer to the [Installation Guide](../installation.en.md).
<b>Note: </b>The official models would be download from HuggingFace by default. If can't access to HuggingFace, please set the environment variable `PADDLE_PDX_MODEL_SOURCE="BOS"` to change the model source to BOS. In the future, more model sources will be supported.
You can also integrate the text line orientation classification model into your project. Run the following code after downloading the [example image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/textline_rot180_demo.jpg) to your local machine.
*`TextLineOrientationClassification` instantiates a textline classification model (here, `PP-LCNet_x0_25_textline_ori` is used as an example), and the specific explanations are as follows:
<td>Whether to use the Paddle Inference TensorRT subgraph engine. If the model does not support acceleration through TensorRT, setting this flag will not enable acceleration.<br/>
For Paddle with CUDA version 11.8, the compatible TensorRT version is 8.x (x>=6), and it is recommended to install TensorRT 8.6.1.6.<br/>
<td>Computation precision when using the TensorRT subgraph engine in Paddle Inference.<br/><b>Options:</b><code>"fp32"</code>, <code>"fp16"</code>.</td>
Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.
* Use the `predict()` method of the text line direction classification model to perform inference. This method returns a list of results. In addition, this module also provides the `predict_iter()` method. Both methods accept the same parameters and return the same result format. The difference is that `predict_iter()` returns a `generator`, which processes and retrieves prediction results step by step. It is suitable for handling large datasets or memory-efficient scenarios. You can choose either method based on your actual needs. The `predict()` method accepts the parameters `input` and `batch_size`, which are described in detail below:
- Local image or PDF file path: <code>/root/data/img.jpg</code>;
-<b>URL</b> of image or PDF file: e.g., <ahref="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_doc_preprocessor_002.png">example</a>;
-<b>Local directory</b>: directory containing images for prediction, e.g., <code>/root/data/</code> (Note: directories containing PDF files are not supported; PDFs must be specified by exact file path)</li>
<li><b>list</b>: Elements must be of the above types, e.g., <code>[numpy.ndarray, numpy.ndarray]</code>, <code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>, <code>["/root/data1", "/root/data2"]</code></li>
* Call the `predict()` method of the text line orientation classification model for inference. This method will return a list of results. In addition, this module also provides a `predict_iter()` method. Both methods accept the same parameters and return the same results, but `predict_iter()` returns a `generator`, which is more suitable for processing large datasets or when you want to save memory. You can choose either method according to your needs. The parameters of the `predict()` method are `input` and `batch_size`, as described below:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Description</th>
<th>Parameter Type</th>
<th>Options</th>
<th>Default Value</th>
</tr>
</thead>
<tr>
<td><code>input</code></td>
<td>Data to be predicted, supporting multiple input types</td>
<li><b>Python variable</b>, such as image data represented by <code>numpy.ndarray</code></li>
<li><b>File path</b>, such as the local path of an image file: <code>/root/data/img.jpg</code></li>
<li><b>URL link</b>, such as the network URL of an image file: <ahref="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/textline_rot180_demo.jpg">Example</a></li>
<li><b>Local directory</b>, the directory should contain data files to be predicted, such as the local path: <code>/root/data/</code></li>
<li><b>list</b>, the elements of the list should be of the above-mentioned data types, such as <code>[numpy.ndarray, numpy.ndarray]</code>, <code>[\"/root/data/img1.jpg\", \"/root/data/img2.jpg\"]</code>, <code>[\"/root/data1\", \"/root/data2\"]</code></li>
* The prediction results are processed, and the prediction result for each sample is of type `dict`. It supports operations such as printing, saving as an image, and saving as a `json` file:
<tdrowspan="3">Print the results to the terminal</td>
<td><code>format_json</code></td>
<td><code>bool</code></td>
<td>Whether to format the output content using <code>JSON</code> indentation</td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specify the indentation level to beautify the output <code>JSON</code> data, making it more readable, only effective when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Control whether to escape non-<code>ASCII</code> characters to <code>Unicode</code>. If set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> retains the original characters, only effective when <code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<tdrowspan="3"><code>save_to_json()</code></td>
<tdrowspan="3">Save the results as a JSON file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The path to save the file. If it is a directory, the saved file name will be consistent with the input file name</td>
<td>None</td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specify the indentation level to beautify the output <code>JSON</code> data, making it more readable, only effective when <code>format_json</code> is <code>True</code></td>
<td>Control whether to escape non-<code>ASCII</code> characters to <code>Unicode</code>. If set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> retains the original characters, only effective when <code>format_json</code> is <code>True</code></td>
Since PaddleOCR does not natively support training for text line orientation classification, refer to [PaddleX's Custom Development Guide](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/textline_orientation_classification.html#iv-custom-development) for training. Trained models can seamlessly integrate into PaddleOCR's API for inference.