PaddleOCR/paddleocr/_common_args.py

152 lines
5.3 KiB
Python
Raw Normal View History

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlex.inference import PaddlePredictorOption
from paddlex.utils.device import get_default_device, parse_device
from ._constants import (
DEFAULT_CPU_THREADS,
DEFAULT_DEVICE,
DEFAULT_ENABLE_MKLDNN,
DEFAULT_MKLDNN_CACHE_CAPACITY,
DEFAULT_PRECISION,
DEFAULT_USE_TENSORRT,
SUPPORTED_PRECISION_LIST,
)
from ._utils.cli import str2bool
def parse_common_args(kwargs, *, default_enable_hpi):
default_vals = {
"device": DEFAULT_DEVICE,
"enable_hpi": default_enable_hpi,
"use_tensorrt": DEFAULT_USE_TENSORRT,
"precision": DEFAULT_PRECISION,
"enable_mkldnn": DEFAULT_ENABLE_MKLDNN,
"mkldnn_cache_capacity": DEFAULT_MKLDNN_CACHE_CAPACITY,
"cpu_threads": DEFAULT_CPU_THREADS,
}
unknown_names = kwargs.keys() - default_vals.keys()
for name in unknown_names:
raise ValueError(f"Unknown argument: {name}")
kwargs = {**default_vals, **kwargs}
if kwargs["precision"] not in SUPPORTED_PRECISION_LIST:
raise ValueError(
f"Invalid precision: {kwargs['precision']}. Supported values are: {SUPPORTED_PRECISION_LIST}."
)
kwargs["use_pptrt"] = kwargs.pop("use_tensorrt")
kwargs["pptrt_precision"] = kwargs.pop("precision")
return kwargs
def prepare_common_init_args(model_name, common_args):
device = common_args["device"]
if device is None:
device = get_default_device()
device_type, device_ids = parse_device(device)
if device_ids is not None:
device_id = device_ids[0]
else:
device_id = None
init_kwargs = {}
init_kwargs["use_hpip"] = common_args["enable_hpi"]
init_kwargs["hpi_config"] = {
"device_type": device_type,
"device_id": device_id,
}
pp_option = PaddlePredictorOption(
model_name, device_type=device_type, device_id=device_id
)
if device_type == "gpu":
if common_args["use_pptrt"]:
if common_args["pptrt_precision"] == "fp32":
pp_option.run_mode = "trt_fp32"
else:
assert common_args["pptrt_precision"] == "fp16", common_args[
"pptrt_precision"
]
pp_option.run_mode = "trt_fp16"
else:
pp_option.run_mode = "paddle"
elif device_type == "cpu":
enable_mkldnn = common_args["enable_mkldnn"]
if enable_mkldnn:
2025-06-24 22:55:56 +08:00
pp_option.run_mode = "mkldnn"
pp_option.mkldnn_cache_capacity = common_args["mkldnn_cache_capacity"]
else:
pp_option.run_mode = "paddle"
pp_option.cpu_threads = common_args["cpu_threads"]
else:
pp_option.run_mode = "paddle"
init_kwargs["pp_option"] = pp_option
return init_kwargs
def add_common_cli_opts(parser, *, default_enable_hpi, allow_multiple_devices):
if allow_multiple_devices:
help_ = "Device(s) to use for inference, e.g., `cpu`, `gpu`, `npu`, `gpu:0`, `gpu:0,1`. If multiple devices are specified, inference will be performed in parallel. Note that parallel inference is not always supported. By default, GPU 0 will be used if available; otherwise, the CPU will be used."
else:
help_ = "Device to use for inference, e.g., `cpu`, `gpu`, `npu`, `gpu:0`. By default, GPU 0 will be used if available; otherwise, the CPU will be used."
parser.add_argument(
"--device",
type=str,
default=DEFAULT_DEVICE,
help=help_,
)
parser.add_argument(
"--enable_hpi",
type=str2bool,
default=default_enable_hpi,
help="Enable the high performance inference.",
)
parser.add_argument(
"--use_tensorrt",
type=str2bool,
default=DEFAULT_USE_TENSORRT,
help="Whether to use the Paddle Inference TensorRT subgraph engine. If the model does not support TensorRT acceleration, even if this flag is set, acceleration will not be used.",
)
parser.add_argument(
"--precision",
type=str,
default=DEFAULT_PRECISION,
choices=SUPPORTED_PRECISION_LIST,
help="Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.",
)
parser.add_argument(
"--enable_mkldnn",
type=str2bool,
default=DEFAULT_ENABLE_MKLDNN,
2025-06-09 10:53:44 +08:00
help="Enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.",
)
parser.add_argument(
"--mkldnn_cache_capacity",
type=int,
default=DEFAULT_MKLDNN_CACHE_CAPACITY,
help="MKL-DNN cache capacity.",
)
parser.add_argument(
"--cpu_threads",
type=int,
default=DEFAULT_CPU_THREADS,
help="Number of threads to use for inference on CPUs.",
)