mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
	
	
		
			285 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			285 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Licensed under the Apache License, Version 2.0 (the "License");
							 | 
						||
| 
								 | 
							
								# you may not use this file except in compliance with the License.
							 | 
						||
| 
								 | 
							
								# You may obtain a copy of the License at
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								#    http://www.apache.org/licenses/LICENSE-2.0
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Unless required by applicable law or agreed to in writing, software
							 | 
						||
| 
								 | 
							
								# distributed under the License is distributed on an "AS IS" BASIS,
							 | 
						||
| 
								 | 
							
								# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
							 | 
						||
| 
								 | 
							
								# See the License for the specific language governing permissions and
							 | 
						||
| 
								 | 
							
								# limitations under the License.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from __future__ import absolute_import
							 | 
						||
| 
								 | 
							
								from __future__ import division
							 | 
						||
| 
								 | 
							
								from __future__ import print_function
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import paddle
							 | 
						||
| 
								 | 
							
								from paddle import ParamAttr
							 | 
						||
| 
								 | 
							
								import paddle.nn as nn
							 | 
						||
| 
								 | 
							
								import paddle.nn.functional as F
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								__all__ = ["ResNet_SAST"]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class ConvBNLayer(nn.Layer):
							 | 
						||
| 
								 | 
							
								    def __init__(
							 | 
						||
| 
								 | 
							
								            self,
							 | 
						||
| 
								 | 
							
								            in_channels,
							 | 
						||
| 
								 | 
							
								            out_channels,
							 | 
						||
| 
								 | 
							
								            kernel_size,
							 | 
						||
| 
								 | 
							
								            stride=1,
							 | 
						||
| 
								 | 
							
								            groups=1,
							 | 
						||
| 
								 | 
							
								            is_vd_mode=False,
							 | 
						||
| 
								 | 
							
								            act=None,
							 | 
						||
| 
								 | 
							
								            name=None, ):
							 | 
						||
| 
								 | 
							
								        super(ConvBNLayer, self).__init__()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.is_vd_mode = is_vd_mode
							 | 
						||
| 
								 | 
							
								        self._pool2d_avg = nn.AvgPool2D(
							 | 
						||
| 
								 | 
							
								            kernel_size=2, stride=2, padding=0, ceil_mode=True)
							 | 
						||
| 
								 | 
							
								        self._conv = nn.Conv2D(
							 | 
						||
| 
								 | 
							
								            in_channels=in_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            kernel_size=kernel_size,
							 | 
						||
| 
								 | 
							
								            stride=stride,
							 | 
						||
| 
								 | 
							
								            padding=(kernel_size - 1) // 2,
							 | 
						||
| 
								 | 
							
								            groups=groups,
							 | 
						||
| 
								 | 
							
								            weight_attr=ParamAttr(name=name + "_weights"),
							 | 
						||
| 
								 | 
							
								            bias_attr=False)
							 | 
						||
| 
								 | 
							
								        if name == "conv1":
							 | 
						||
| 
								 | 
							
								            bn_name = "bn_" + name
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            bn_name = "bn" + name[3:]
							 | 
						||
| 
								 | 
							
								        self._batch_norm = nn.BatchNorm(
							 | 
						||
| 
								 | 
							
								            out_channels,
							 | 
						||
| 
								 | 
							
								            act=act,
							 | 
						||
| 
								 | 
							
								            param_attr=ParamAttr(name=bn_name + '_scale'),
							 | 
						||
| 
								 | 
							
								            bias_attr=ParamAttr(bn_name + '_offset'),
							 | 
						||
| 
								 | 
							
								            moving_mean_name=bn_name + '_mean',
							 | 
						||
| 
								 | 
							
								            moving_variance_name=bn_name + '_variance')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def forward(self, inputs):
							 | 
						||
| 
								 | 
							
								        if self.is_vd_mode:
							 | 
						||
| 
								 | 
							
								            inputs = self._pool2d_avg(inputs)
							 | 
						||
| 
								 | 
							
								        y = self._conv(inputs)
							 | 
						||
| 
								 | 
							
								        y = self._batch_norm(y)
							 | 
						||
| 
								 | 
							
								        return y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class BottleneckBlock(nn.Layer):
							 | 
						||
| 
								 | 
							
								    def __init__(self,
							 | 
						||
| 
								 | 
							
								                 in_channels,
							 | 
						||
| 
								 | 
							
								                 out_channels,
							 | 
						||
| 
								 | 
							
								                 stride,
							 | 
						||
| 
								 | 
							
								                 shortcut=True,
							 | 
						||
| 
								 | 
							
								                 if_first=False,
							 | 
						||
| 
								 | 
							
								                 name=None):
							 | 
						||
| 
								 | 
							
								        super(BottleneckBlock, self).__init__()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.conv0 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=in_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            kernel_size=1,
							 | 
						||
| 
								 | 
							
								            act='relu',
							 | 
						||
| 
								 | 
							
								            name=name + "_branch2a")
							 | 
						||
| 
								 | 
							
								        self.conv1 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            kernel_size=3,
							 | 
						||
| 
								 | 
							
								            stride=stride,
							 | 
						||
| 
								 | 
							
								            act='relu',
							 | 
						||
| 
								 | 
							
								            name=name + "_branch2b")
							 | 
						||
| 
								 | 
							
								        self.conv2 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=out_channels * 4,
							 | 
						||
| 
								 | 
							
								            kernel_size=1,
							 | 
						||
| 
								 | 
							
								            act=None,
							 | 
						||
| 
								 | 
							
								            name=name + "_branch2c")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if not shortcut:
							 | 
						||
| 
								 | 
							
								            self.short = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								                in_channels=in_channels,
							 | 
						||
| 
								 | 
							
								                out_channels=out_channels * 4,
							 | 
						||
| 
								 | 
							
								                kernel_size=1,
							 | 
						||
| 
								 | 
							
								                stride=1,
							 | 
						||
| 
								 | 
							
								                is_vd_mode=False if if_first else True,
							 | 
						||
| 
								 | 
							
								                name=name + "_branch1")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.shortcut = shortcut
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def forward(self, inputs):
							 | 
						||
| 
								 | 
							
								        y = self.conv0(inputs)
							 | 
						||
| 
								 | 
							
								        conv1 = self.conv1(y)
							 | 
						||
| 
								 | 
							
								        conv2 = self.conv2(conv1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if self.shortcut:
							 | 
						||
| 
								 | 
							
								            short = inputs
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            short = self.short(inputs)
							 | 
						||
| 
								 | 
							
								        y = paddle.add(x=short, y=conv2)
							 | 
						||
| 
								 | 
							
								        y = F.relu(y)
							 | 
						||
| 
								 | 
							
								        return y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class BasicBlock(nn.Layer):
							 | 
						||
| 
								 | 
							
								    def __init__(self,
							 | 
						||
| 
								 | 
							
								                 in_channels,
							 | 
						||
| 
								 | 
							
								                 out_channels,
							 | 
						||
| 
								 | 
							
								                 stride,
							 | 
						||
| 
								 | 
							
								                 shortcut=True,
							 | 
						||
| 
								 | 
							
								                 if_first=False,
							 | 
						||
| 
								 | 
							
								                 name=None):
							 | 
						||
| 
								 | 
							
								        super(BasicBlock, self).__init__()
							 | 
						||
| 
								 | 
							
								        self.stride = stride
							 | 
						||
| 
								 | 
							
								        self.conv0 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=in_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            kernel_size=3,
							 | 
						||
| 
								 | 
							
								            stride=stride,
							 | 
						||
| 
								 | 
							
								            act='relu',
							 | 
						||
| 
								 | 
							
								            name=name + "_branch2a")
							 | 
						||
| 
								 | 
							
								        self.conv1 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=out_channels,
							 | 
						||
| 
								 | 
							
								            kernel_size=3,
							 | 
						||
| 
								 | 
							
								            act=None,
							 | 
						||
| 
								 | 
							
								            name=name + "_branch2b")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if not shortcut:
							 | 
						||
| 
								 | 
							
								            self.short = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								                in_channels=in_channels,
							 | 
						||
| 
								 | 
							
								                out_channels=out_channels,
							 | 
						||
| 
								 | 
							
								                kernel_size=1,
							 | 
						||
| 
								 | 
							
								                stride=1,
							 | 
						||
| 
								 | 
							
								                is_vd_mode=False if if_first else True,
							 | 
						||
| 
								 | 
							
								                name=name + "_branch1")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.shortcut = shortcut
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def forward(self, inputs):
							 | 
						||
| 
								 | 
							
								        y = self.conv0(inputs)
							 | 
						||
| 
								 | 
							
								        conv1 = self.conv1(y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if self.shortcut:
							 | 
						||
| 
								 | 
							
								            short = inputs
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            short = self.short(inputs)
							 | 
						||
| 
								 | 
							
								        y = paddle.add(x=short, y=conv1)
							 | 
						||
| 
								 | 
							
								        y = F.relu(y)
							 | 
						||
| 
								 | 
							
								        return y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class ResNet_SAST(nn.Layer):
							 | 
						||
| 
								 | 
							
								    def __init__(self, in_channels=3, layers=50, **kwargs):
							 | 
						||
| 
								 | 
							
								        super(ResNet_SAST, self).__init__()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.layers = layers
							 | 
						||
| 
								 | 
							
								        supported_layers = [18, 34, 50, 101, 152, 200]
							 | 
						||
| 
								 | 
							
								        assert layers in supported_layers, \
							 | 
						||
| 
								 | 
							
								            "supported layers are {} but input layer is {}".format(
							 | 
						||
| 
								 | 
							
								                supported_layers, layers)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if layers == 18:
							 | 
						||
| 
								 | 
							
								            depth = [2, 2, 2, 2]
							 | 
						||
| 
								 | 
							
								        elif layers == 34 or layers == 50:
							 | 
						||
| 
								 | 
							
								            # depth = [3, 4, 6, 3]
							 | 
						||
| 
								 | 
							
								            depth = [3, 4, 6, 3, 3]
							 | 
						||
| 
								 | 
							
								        elif layers == 101:
							 | 
						||
| 
								 | 
							
								            depth = [3, 4, 23, 3]
							 | 
						||
| 
								 | 
							
								        elif layers == 152:
							 | 
						||
| 
								 | 
							
								            depth = [3, 8, 36, 3]
							 | 
						||
| 
								 | 
							
								        elif layers == 200:
							 | 
						||
| 
								 | 
							
								            depth = [3, 12, 48, 3]
							 | 
						||
| 
								 | 
							
								        # num_channels = [64, 256, 512,
							 | 
						||
| 
								 | 
							
								        #                 1024] if layers >= 50 else [64, 64, 128, 256]
							 | 
						||
| 
								 | 
							
								        # num_filters = [64, 128, 256, 512]
							 | 
						||
| 
								 | 
							
								        num_channels = [64, 256, 512,
							 | 
						||
| 
								 | 
							
								                        1024, 2048] if layers >= 50 else [64, 64, 128, 256]
							 | 
						||
| 
								 | 
							
								        num_filters = [64, 128, 256, 512, 512]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.conv1_1 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=in_channels,
							 | 
						||
| 
								 | 
							
								            out_channels=32,
							 | 
						||
| 
								 | 
							
								            kernel_size=3,
							 | 
						||
| 
								 | 
							
								            stride=2,
							 | 
						||
| 
								 | 
							
								            act='relu',
							 | 
						||
| 
								 | 
							
								            name="conv1_1")
							 | 
						||
| 
								 | 
							
								        self.conv1_2 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=32,
							 | 
						||
| 
								 | 
							
								            out_channels=32,
							 | 
						||
| 
								 | 
							
								            kernel_size=3,
							 | 
						||
| 
								 | 
							
								            stride=1,
							 | 
						||
| 
								 | 
							
								            act='relu',
							 | 
						||
| 
								 | 
							
								            name="conv1_2")
							 | 
						||
| 
								 | 
							
								        self.conv1_3 = ConvBNLayer(
							 | 
						||
| 
								 | 
							
								            in_channels=32,
							 | 
						||
| 
								 | 
							
								            out_channels=64,
							 | 
						||
| 
								 | 
							
								            kernel_size=3,
							 | 
						||
| 
								 | 
							
								            stride=1,
							 | 
						||
| 
								 | 
							
								            act='relu',
							 | 
						||
| 
								 | 
							
								            name="conv1_3")
							 | 
						||
| 
								 | 
							
								        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.stages = []
							 | 
						||
| 
								 | 
							
								        self.out_channels = [3, 64]
							 | 
						||
| 
								 | 
							
								        if layers >= 50:
							 | 
						||
| 
								 | 
							
								            for block in range(len(depth)):
							 | 
						||
| 
								 | 
							
								                block_list = []
							 | 
						||
| 
								 | 
							
								                shortcut = False
							 | 
						||
| 
								 | 
							
								                for i in range(depth[block]):
							 | 
						||
| 
								 | 
							
								                    if layers in [101, 152] and block == 2:
							 | 
						||
| 
								 | 
							
								                        if i == 0:
							 | 
						||
| 
								 | 
							
								                            conv_name = "res" + str(block + 2) + "a"
							 | 
						||
| 
								 | 
							
								                        else:
							 | 
						||
| 
								 | 
							
								                            conv_name = "res" + str(block + 2) + "b" + str(i)
							 | 
						||
| 
								 | 
							
								                    else:
							 | 
						||
| 
								 | 
							
								                        conv_name = "res" + str(block + 2) + chr(97 + i)
							 | 
						||
| 
								 | 
							
								                    bottleneck_block = self.add_sublayer(
							 | 
						||
| 
								 | 
							
								                        'bb_%d_%d' % (block, i),
							 | 
						||
| 
								 | 
							
								                        BottleneckBlock(
							 | 
						||
| 
								 | 
							
								                            in_channels=num_channels[block]
							 | 
						||
| 
								 | 
							
								                            if i == 0 else num_filters[block] * 4,
							 | 
						||
| 
								 | 
							
								                            out_channels=num_filters[block],
							 | 
						||
| 
								 | 
							
								                            stride=2 if i == 0 and block != 0 else 1,
							 | 
						||
| 
								 | 
							
								                            shortcut=shortcut,
							 | 
						||
| 
								 | 
							
								                            if_first=block == i == 0,
							 | 
						||
| 
								 | 
							
								                            name=conv_name))
							 | 
						||
| 
								 | 
							
								                    shortcut = True
							 | 
						||
| 
								 | 
							
								                    block_list.append(bottleneck_block)
							 | 
						||
| 
								 | 
							
								                self.out_channels.append(num_filters[block] * 4)
							 | 
						||
| 
								 | 
							
								                self.stages.append(nn.Sequential(*block_list))
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            for block in range(len(depth)):
							 | 
						||
| 
								 | 
							
								                block_list = []
							 | 
						||
| 
								 | 
							
								                shortcut = False
							 | 
						||
| 
								 | 
							
								                for i in range(depth[block]):
							 | 
						||
| 
								 | 
							
								                    conv_name = "res" + str(block + 2) + chr(97 + i)
							 | 
						||
| 
								 | 
							
								                    basic_block = self.add_sublayer(
							 | 
						||
| 
								 | 
							
								                        'bb_%d_%d' % (block, i),
							 | 
						||
| 
								 | 
							
								                        BasicBlock(
							 | 
						||
| 
								 | 
							
								                            in_channels=num_channels[block]
							 | 
						||
| 
								 | 
							
								                            if i == 0 else num_filters[block],
							 | 
						||
| 
								 | 
							
								                            out_channels=num_filters[block],
							 | 
						||
| 
								 | 
							
								                            stride=2 if i == 0 and block != 0 else 1,
							 | 
						||
| 
								 | 
							
								                            shortcut=shortcut,
							 | 
						||
| 
								 | 
							
								                            if_first=block == i == 0,
							 | 
						||
| 
								 | 
							
								                            name=conv_name))
							 | 
						||
| 
								 | 
							
								                    shortcut = True
							 | 
						||
| 
								 | 
							
								                    block_list.append(basic_block)
							 | 
						||
| 
								 | 
							
								                self.out_channels.append(num_filters[block])
							 | 
						||
| 
								 | 
							
								                self.stages.append(nn.Sequential(*block_list))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def forward(self, inputs):
							 | 
						||
| 
								 | 
							
								        out = [inputs]
							 | 
						||
| 
								 | 
							
								        y = self.conv1_1(inputs)
							 | 
						||
| 
								 | 
							
								        y = self.conv1_2(y)
							 | 
						||
| 
								 | 
							
								        y = self.conv1_3(y)
							 | 
						||
| 
								 | 
							
								        out.append(y)
							 | 
						||
| 
								 | 
							
								        y = self.pool2d_max(y)
							 | 
						||
| 
								 | 
							
								        for block in self.stages:
							 | 
						||
| 
								 | 
							
								            y = block(y)
							 | 
						||
| 
								 | 
							
								            out.append(y)
							 | 
						||
| 
								 | 
							
								        return out
							 |