PaddleOCR/ppocr/data/imaug/label_ops.py

473 lines
17 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
2021-01-26 15:53:49 +08:00
import string
2021-10-09 15:40:25 +08:00
from shapely.geometry import LineString, Point, Polygon
2020-11-17 12:54:24 +08:00
class ClsLabelEncode(object):
def __init__(self, label_list, **kwargs):
self.label_list = label_list
def __call__(self, data):
label = data['label']
if label not in self.label_list:
return None
label = self.label_list.index(label)
data['label'] = label
return data
2020-10-13 17:13:33 +08:00
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
2020-12-09 06:45:25 +00:00
boxes = self.expand_points_num(boxes)
2020-10-13 17:13:33 +08:00
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
2020-12-09 06:45:25 +00:00
def expand_points_num(self, boxes):
max_points_num = 0
for box in boxes:
if len(box) > max_points_num:
max_points_num = len(box)
ex_boxes = []
for box in boxes:
ex_box = box + [box[-1]] * (max_points_num - len(box))
ex_boxes.append(ex_box)
return ex_boxes
2020-10-13 17:13:33 +08:00
class BaseRecLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False):
2020-12-09 06:45:25 +00:00
support_character_type = [
2021-01-26 15:53:49 +08:00
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
'EN', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs',
2021-01-26 15:24:13 +08:00
'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi',
2021-04-14 15:38:27 +08:00
'mr', 'ne', 'latin', 'arabic', 'cyrillic', 'devanagari'
2020-12-09 06:45:25 +00:00
]
2020-10-13 17:13:33 +08:00
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
2020-12-09 08:48:27 +00:00
support_character_type, character_type)
2020-10-13 17:13:33 +08:00
self.max_text_len = max_text_length
2020-12-30 16:15:49 +08:00
self.beg_str = "sos"
self.end_str = "eos"
2020-10-13 17:13:33 +08:00
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
2021-01-26 15:53:49 +08:00
elif character_type == "EN_symbol":
2021-01-26 15:24:13 +08:00
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
elif character_type in support_character_type:
2020-10-13 17:13:33 +08:00
self.character_str = ""
2021-01-26 15:24:13 +08:00
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
character_type)
2020-10-13 17:13:33 +08:00
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if use_space_char:
self.character_str += " "
dict_character = list(self.character_str)
self.character_type = character_type
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
2020-11-27 15:30:31 +08:00
if len(text) == 0 or len(text) > self.max_text_len:
2020-10-13 17:13:33 +08:00
return None
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
# logger = get_logger()
# logger.warning('{} is not in dict'.format(char))
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(CTCLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character
2021-03-15 13:58:53 +08:00
class E2ELabelEncode(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='EN',
use_space_char=False,
**kwargs):
super(E2ELabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
2021-03-19 11:59:35 +08:00
self.pad_num = len(self.dict) # the length to pad
2021-03-15 13:58:53 +08:00
def __call__(self, data):
2021-10-09 15:40:25 +08:00
text_label_index_list, temp_text = [], []
2021-03-15 13:58:53 +08:00
texts = data['strs']
for text in texts:
2021-03-19 11:59:35 +08:00
text = text.lower()
2021-10-09 15:40:25 +08:00
temp_text = []
for c_ in text:
if c_ in self.dict:
temp_text.append(self.dict[c_])
temp_text = temp_text + [self.pad_num] * (self.max_text_len -
len(temp_text))
text_label_index_list.append(temp_text)
data['strs'] = np.array(text_label_index_list)
2021-03-15 13:58:53 +08:00
return data
2021-10-09 15:40:25 +08:00
class KieLabelEncode(object):
def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
super(KieLabelEncode, self).__init__()
self.dict = dict({'': 0})
with open(character_dict_path, 'r') as fr:
idx = 1
for line in fr:
char = line.strip()
self.dict[char] = idx
idx += 1
self.norm = norm
self.directed = directed
def compute_relation(self, boxes):
"""Compute relation between every two boxes."""
x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
dxs = (x1s[:, 0][None] - x1s) / self.norm
dys = (y1s[:, 0][None] - y1s) / self.norm
xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
whs = ws / hs + np.zeros_like(xhhs)
relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
return relations, bboxes
def pad_text_indices(self, text_inds):
"""Pad text index to same length."""
max_len = 100
recoder_len = max([len(text_ind) for text_ind in text_inds])
padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
for idx, text_ind in enumerate(text_inds):
padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
return padded_text_inds, recoder_len
def list_to_numpy(self, ann_infos):
"""Convert bboxes, relations, texts and labels to ndarray."""
boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
boxes = np.array(boxes, np.int32)
relations, bboxes = self.compute_relation(boxes)
labels = ann_infos.get('labels', None)
if labels is not None:
labels = np.array(labels, np.int32)
edges = ann_infos.get('edges', None)
if edges is not None:
labels = labels[:, None]
edges = np.array(edges)
edges = (edges[:, None] == edges[None, :]).astype(np.int32)
if self.directed:
edges = (edges & labels == 1).astype(np.int32)
np.fill_diagonal(edges, -1)
labels = np.concatenate([labels, edges], -1)
padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
max_num = 100
temp_bboxes = np.zeros([max_num, 4])
h, _ = bboxes.shape
temp_bboxes[:h, :h] = bboxes
temp_relations = np.zeros([max_num, max_num, 5])
temp_relations[:h, :h, :] = relations
temp_padded_text_inds = np.zeros([max_num, 100])
temp_padded_text_inds[:h, :] = padded_text_inds
temp_labels = np.zeros([max_num, 100])
temp_labels[:h, :h + 1] = labels
tag = np.array([h, recoder_len])
return dict(
image=ann_infos['image'],
points=temp_bboxes,
relations=temp_relations,
texts=temp_padded_text_inds,
labels=temp_labels,
tag=tag)
def convert_canonical(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
points = [Point(points_x[i], points_y[i]) for i in range(4)]
polygon = Polygon([(p.x, p.y) for p in points])
min_x, min_y, _, _ = polygon.bounds
points_to_lefttop = [
LineString([points[i], Point(min_x, min_y)]) for i in range(4)
]
distances = np.array([line.length for line in points_to_lefttop])
sort_dist_idx = np.argsort(distances)
lefttop_idx = sort_dist_idx[0]
if lefttop_idx == 0:
point_orders = [0, 1, 2, 3]
elif lefttop_idx == 1:
point_orders = [1, 2, 3, 0]
elif lefttop_idx == 2:
point_orders = [2, 3, 0, 1]
else:
point_orders = [3, 0, 1, 2]
sorted_points_x = [points_x[i] for i in point_orders]
sorted_points_y = [points_y[j] for j in point_orders]
return sorted_points_x, sorted_points_y
def sort_vertex(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
x = np.array(points_x)
y = np.array(points_y)
center_x = np.sum(x) * 0.25
center_y = np.sum(y) * 0.25
x_arr = np.array(x - center_x)
y_arr = np.array(y - center_y)
angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
sort_idx = np.argsort(angle)
sorted_points_x, sorted_points_y = [], []
for i in range(4):
sorted_points_x.append(points_x[sort_idx[i]])
sorted_points_y.append(points_y[sort_idx[i]])
return self.convert_canonical(sorted_points_x, sorted_points_y)
def __call__(self, data):
import json
label = data['label']
annotations = json.loads(label)
boxes, texts, text_inds, labels, edges = [], [], [], [], []
for ann in annotations:
box = ann['points']
x_list = [box[i][0] for i in range(4)]
y_list = [box[i][1] for i in range(4)]
sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
sorted_box = []
for x, y in zip(sorted_x_list, sorted_y_list):
sorted_box.append(x)
sorted_box.append(y)
boxes.append(sorted_box)
text = ann['transcription']
texts.append(ann['transcription'])
text_ind = [self.dict[c] for c in text if c in self.dict]
text_inds.append(text_ind)
labels.append(ann['label'])
edges.append(ann.get('edge', 0))
ann_infos = dict(
image=data['image'],
points=boxes,
texts=texts,
text_inds=text_inds,
edges=edges,
labels=labels)
return self.list_to_numpy(ann_infos)
2020-10-13 17:13:33 +08:00
class AttnLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(AttnLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
2021-01-29 03:15:03 +00:00
self.beg_str = "sos"
self.end_str = "eos"
dict_character = [self.beg_str] + dict_character + [self.end_str]
2020-10-13 17:13:33 +08:00
return dict_character
2021-01-29 03:15:03 +00:00
def __call__(self, data):
text = data['label']
2020-10-13 17:13:33 +08:00
text = self.encode(text)
2021-01-29 03:15:03 +00:00
if text is None:
return None
2021-02-01 06:44:04 +00:00
if len(text) >= self.max_text_len:
2021-01-29 03:15:03 +00:00
return None
data['length'] = np.array(len(text))
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
2021-02-08 03:30:27 +00:00
- len(text) - 2)
2021-01-29 03:15:03 +00:00
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
2020-10-13 17:13:33 +08:00
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
2020-12-30 16:15:49 +08:00
class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length=25,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
2021-02-03 08:26:46 +00:00
char_num = len(self.character)
2020-12-30 16:15:49 +08:00
if text is None:
return None
if len(text) > self.max_text_len:
return None
data['length'] = np.array(len(text))
2021-02-08 03:21:01 +00:00
text = text + [char_num - 1] * (self.max_text_len - len(text))
2020-12-30 16:15:49 +08:00
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx