mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-12 03:20:52 +00:00
154 lines
5.2 KiB
Python
154 lines
5.2 KiB
Python
![]() |
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
|
||
|
__all__ = ["Kie_backbone"]
|
||
|
|
||
|
|
||
|
class Encoder(nn.Layer):
|
||
|
def __init__(self, num_channels, num_filters):
|
||
|
super(Encoder, self).__init__()
|
||
|
self.conv1 = nn.Conv2D(
|
||
|
num_channels, num_filters, kernel_size=3, stride=1, padding=1)
|
||
|
self.bn1 = nn.BatchNorm(num_filters, act='relu')
|
||
|
|
||
|
self.conv2 = nn.Conv2D(
|
||
|
num_filters, num_filters, kernel_size=3, stride=1, padding=1)
|
||
|
self.bn2 = nn.BatchNorm(num_filters, act='relu')
|
||
|
|
||
|
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x = self.conv1(inputs)
|
||
|
x = self.bn1(x)
|
||
|
x = self.conv2(x)
|
||
|
x = self.bn2(x)
|
||
|
x_pooled = self.pool(x)
|
||
|
|
||
|
return x, x_pooled
|
||
|
|
||
|
|
||
|
class Decoder(nn.Layer):
|
||
|
def __init__(self, num_channels, num_filters):
|
||
|
super(Decoder, self).__init__()
|
||
|
self.up = nn.Conv2DTranspose(
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=2,
|
||
|
stride=2)
|
||
|
self.conv1 = nn.Conv2D(
|
||
|
num_channels, num_filters, kernel_size=3, stride=1, padding=1)
|
||
|
self.bn1 = nn.BatchNorm(num_filters, act='relu')
|
||
|
|
||
|
self.conv2 = nn.Conv2D(
|
||
|
num_filters, num_filters, kernel_size=3, stride=1, padding=1)
|
||
|
self.bn2 = nn.BatchNorm(num_filters, act='relu')
|
||
|
|
||
|
def forward(self, inputs_prev, inputs):
|
||
|
x = self.up(inputs)
|
||
|
x = paddle.concat([inputs_prev, x], axis=1)
|
||
|
x = self.conv1(x)
|
||
|
x = self.bn1(x)
|
||
|
x = self.conv2(x)
|
||
|
x = self.bn2(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class UNet(nn.Layer):
|
||
|
def __init__(self):
|
||
|
super(UNet, self).__init__()
|
||
|
self.down1 = Encoder(num_channels=3, num_filters=16)
|
||
|
self.down2 = Encoder(num_channels=16, num_filters=32)
|
||
|
self.down3 = Encoder(num_channels=32, num_filters=64)
|
||
|
self.down4 = Encoder(num_channels=64, num_filters=128)
|
||
|
self.down5 = Encoder(num_channels=128, num_filters=256)
|
||
|
|
||
|
self.up4 = Decoder(256, 128)
|
||
|
self.up3 = Decoder(128, 64)
|
||
|
self.up2 = Decoder(64, 32)
|
||
|
self.up1 = Decoder(32, 16)
|
||
|
self.out_channels = 16
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x1, x = self.down1(inputs)
|
||
|
x2, x = self.down2(x)
|
||
|
x3, x = self.down3(x)
|
||
|
x4, x = self.down4(x)
|
||
|
x5, x = self.down5(x)
|
||
|
|
||
|
x = self.up4(x4, x5)
|
||
|
x = self.up3(x3, x)
|
||
|
x = self.up2(x2, x)
|
||
|
x = self.up1(x1, x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Kie_backbone(nn.Layer):
|
||
|
def __init__(self, in_channels, **kwargs):
|
||
|
super(Kie_backbone, self).__init__()
|
||
|
self.out_channels = 16
|
||
|
self.img_feat = UNet()
|
||
|
self.maxpool = nn.MaxPool2D(kernel_size=7)
|
||
|
|
||
|
def bbox2roi(self, bbox_list):
|
||
|
rois_list = []
|
||
|
rois_num = []
|
||
|
for img_id, bboxes in enumerate(bbox_list):
|
||
|
rois_num.append(bboxes.shape[0])
|
||
|
rois_list.append(bboxes)
|
||
|
rois = paddle.concat(rois_list, 0)
|
||
|
rois_num = paddle.to_tensor(rois_num, dtype='int32')
|
||
|
return rois, rois_num
|
||
|
|
||
|
def pre_process(self, relations, texts, gt_bboxes, tag):
|
||
|
relations, texts, gt_bboxes, tag = relations.numpy(), texts.numpy(
|
||
|
), gt_bboxes.numpy(), tag.numpy().tolist()
|
||
|
temp_relations, temp_texts, temp_gt_bboxes = [], [], []
|
||
|
batch = len(tag)
|
||
|
for i in range(batch):
|
||
|
num, recoder_len = tag[i][0], tag[i][1]
|
||
|
temp_relations.append(
|
||
|
paddle.to_tensor(
|
||
|
relations[i, :num, :num, :], dtype='float32'))
|
||
|
temp_texts.append(
|
||
|
paddle.to_tensor(
|
||
|
texts[i, :num, :recoder_len], dtype='float32'))
|
||
|
temp_gt_bboxes.append(
|
||
|
paddle.to_tensor(
|
||
|
gt_bboxes[i, :num, ...], dtype='float32'))
|
||
|
return temp_relations, temp_texts, temp_gt_bboxes
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
img, relations, texts, gt_bboxes, tag = inputs[0], inputs[1], inputs[
|
||
|
2], inputs[3], inputs[5]
|
||
|
relations, texts, gt_bboxes = self.pre_process(relations, texts,
|
||
|
gt_bboxes, tag)
|
||
|
x = self.img_feat(img)
|
||
|
boxes, rois_num = self.bbox2roi(gt_bboxes)
|
||
|
feats = paddle.fluid.layers.roi_align(
|
||
|
x,
|
||
|
boxes,
|
||
|
spatial_scale=1.0,
|
||
|
pooled_height=7,
|
||
|
pooled_width=7,
|
||
|
rois_num=rois_num)
|
||
|
feats = self.maxpool(feats).squeeze(-1).squeeze(-1)
|
||
|
return [relations, texts, feats]
|