2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								# Algorithms
  
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:01:05 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								-  [1. Two-stage OCR Algorithms ](#1 ) 
						 
					
						
							
								
									
										
										
										
											2022-07-05 09:31:53 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								  -  [1.1 Text Detection Algorithms ](#11 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								  -  [1.2 Text Recognition Algorithms ](#12 )
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								-  [2. End-to-end OCR Algorithms ](#2 ) 
						 
					
						
							
								
									
										
										
										
											2022-07-05 09:31:53 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								-  [3. Table Recognition Algorithms ](#3 ) 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								-  [4. Key Information Extraction Algorithms ](#4 ) 
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:01:05 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-08-23 07:24:14 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								This tutorial lists the OCR algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets** . It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCRv3 models list ](./models_list_en.md ).
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								>>
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								Developers are welcome to contribute more algorithms! Please refer to [add new algorithm ](./add_new_algorithm_en.md ) guideline.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								< a  name = "1" > < / a >  
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								## 1. Two-stage OCR Algorithms
  
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								< a  name = "11" > < / a >  
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								### 1.1 Text Detection Algorithms
  
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:01:05 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								Supported text detection algorithms (Click the link to get the tutorial):
							 
						 
					
						
							
								
									
										
										
										
											2022-08-24 21:06:59 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [DB && DB++ ](./algorithm_det_db_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [EAST ](./algorithm_det_east_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SAST ](./algorithm_det_sast_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [PSENet ](./algorithm_det_psenet_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [FCENet ](./algorithm_det_fcenet_en.md ) 
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								On the ICDAR2015 dataset, the text detection result is as follows:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:49:04 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Precision|Recall|Hmean|Download link|
							 
						 
					
						
							
								
									
										
										
										
											2020-12-15 14:49:13 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								| --- | --- | --- | --- | --- | --- |
							 
						 
					
						
							
								
									
										
										
										
											2022-01-06 10:15:46 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|EAST|ResNet50_vd|88.71%|81.36%|84.88%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|EAST|MobileNetV3|78.2%|79.1%|78.65%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:49:04 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|DB|ResNet50_vd|86.41%|78.72%|82.38%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|DB|MobileNetV3|77.29%|73.08%|75.12%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2021-11-10 14:51:25 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[trianed model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|PSE|MobileNetV3|82.20%|70.48%|75.89%|[trianed model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2022-08-24 21:06:59 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|DB++|ResNet50|90.89%|82.66%|86.58%|[pretrained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams )/[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								On Total-Text dataset, the text detection result is as follows:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:49:04 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Precision|Recall|Hmean|Download link|
							 
						 
					
						
							
								
									
										
										
										
											2020-12-15 14:49:13 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								| --- | --- | --- | --- | --- | --- |
							 
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:49:04 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-05-16 17:36:26 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								On CTW1500 dataset, the text detection result is as follows:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Precision|Recall|Hmean| Download link|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								| --- | --- | --- | --- | --- |---|  
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|FCE|ResNet50_dcn|88.39%|82.18%|85.27%| [trained model ](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar ) |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2021-03-18 10:29:11 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
										 
							
							
								**Note: 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								*  [Baidu Drive ](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw ) (download code: 2bpi). 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								*  [Google Drive ](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing ) 
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								< a  name = "12" > < / a >  
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								### 1.2 Text Recognition Algorithms
  
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								Supported text recognition algorithms (Click the link to get the tutorial):
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [CRNN ](./algorithm_rec_crnn_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [Rosetta ](./algorithm_rec_rosetta_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [STAR-Net ](./algorithm_rec_starnet_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [RARE ](./algorithm_rec_rare_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SRN ](./algorithm_rec_srn_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [NRTR ](./algorithm_rec_nrtr_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SAR ](./algorithm_rec_sar_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SEED ](./algorithm_rec_seed_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-05-10 16:27:55 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SVTR ](./algorithm_rec_svtr_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-05-27 06:49:52 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [ViTSTR ](./algorithm_rec_vitstr_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-06-22 14:19:55 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [ABINet ](./algorithm_rec_abinet_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-08-09 11:29:43 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [VisionLAN ](./algorithm_rec_visionlan_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-07-10 11:49:48 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SPIN ](./algorithm_rec_spin_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-08-01 21:36:36 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [RobustScanner ](./algorithm_rec_robustscanner_en.md ) 
						 
					
						
							
								
									
										
										
										
											2020-10-13 17:49:16 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								Refer to [DTRB ](https://arxiv.org/abs/1904.01906 ), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Avg Accuracy|Module combination|Download link|
							 
						 
					
						
							
								
									
										
										
										
											2021-01-20 18:22:53 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|---|---|---|---|---|
							 
						 
					
						
							
								
									
										
										
										
											2022-01-17 09:54:20 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|Rosetta|Resnet34_vd|79.11%|rec_r34_vd_none_none_ctc|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|Rosetta|MobileNetV3|75.80%|rec_mv3_none_none_ctc|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|CRNN|Resnet34_vd|81.04%|rec_r34_vd_none_bilstm_ctc|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|CRNN|MobileNetV3|77.95%|rec_mv3_none_bilstm_ctc|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|StarNet|Resnet34_vd|82.85%|rec_r34_vd_tps_bilstm_ctc|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|StarNet|MobileNetV3|79.28%|rec_mv3_tps_bilstm_ctc|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|RARE|Resnet34_vd|83.98%|rec_r34_vd_tps_bilstm_att |[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|RARE|MobileNetV3|81.76%|rec_mv3_tps_bilstm_att |[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|SRN|Resnet50_vd_fpn| 86.31% | rec_r50fpn_vd_none_srn |[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|NRTR|NRTR_MTB| 84.21% | rec_mtb_nrtr | [trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar ) |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|SAR|Resnet31| 87.20% | rec_r31_sar | [trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar ) |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar ) |
							 
						 
					
						
							
								
									
										
										
										
											2022-05-10 08:18:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model ](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar ) |
							 
						 
					
						
							
								
									
										
										
										
											2022-06-29 12:08:45 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [trained model ](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar ) |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|ABINet|Resnet45| 90.75% | rec_r45_abinet | [trained model ](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar ) |
							 
						 
					
						
							
								
									
										
										
										
											2022-08-09 11:29:43 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [trained model ](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar ) |
							 
						 
					
						
							
								
									
										
										
										
											2022-09-29 06:52:10 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | [trained model ](https://paddleocr.bj.bcebos.com/contribution/rec_r32_gaspin_bilstm_att.tar ) |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | [trained model ](https://paddleocr.bj.bcebos.com/contribution/rec_r31_robustscanner.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:01:05 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								< a  name = "2" > < / a >  
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:01:05 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								## 2. End-to-end OCR Algorithms
  
						 
					
						
							
								
									
										
										
										
											2021-11-09 20:01:05 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-04-21 05:24:31 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								Supported end-to-end algorithms (Click the link to get the tutorial):
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [PGNet ](./algorithm_e2e_pgnet_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-07-04 10:22:25 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-07-04 10:22:25 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								< a  name = "3" > < / a >  
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								## 3. Table Recognition Algorithms
  
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								Supported table recognition algorithms (Click the link to get the tutorial):
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [TableMaster ](./algorithm_table_master_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								On the PubTabNet dataset, the algorithm result is as follows:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Config|Acc|Download link|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|---|---|---|---|---|
							 
						 
					
						
							
								
									
										
										
										
											2022-07-05 02:51:07 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								|TableMaster|TableResNetExtra|[configs/table/table_master.yml ](../../configs/table/table_master.yml )|77.47%|[trained ](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar ) / [inference model ](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								< a  name = "4" > < / a >  
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								## 4. Key Information Extraction Algorithms
  
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								Supported KIE algorithms (Click the link to get the tutorial):
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-08-24 17:44:52 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [VI-LayoutXLM ](./algorithm_kie_vi_layoutxlm_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [LayoutLM ](./algorithm_kie_layoutxlm_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [LayoutLMv2 ](./algorithm_kie_layoutxlm_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [LayoutXLM ](./algorithm_kie_layoutxlm_en.md ) 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
								
									
								 
							
							
								- [x]   [SDMGR ](./algorithm_kie_sdmgr_en.md ) 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								On wildreceipt dataset, the algorithm result is as follows:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Config|Hmean|Download link|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								| --- | --- | --- | --- | --- |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|SDMGR|VGG6|[configs/kie/sdmgr/kie_unet_sdmgr.yml ](../../configs/kie/sdmgr/kie_unet_sdmgr.yml )|86.7%|[trained model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								On XFUND_zh dataset, the algorithm result is as follows:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|Model|Backbone|Task|Config|Hmean|Download link|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								| --- | --- |  --- | --- | --- | --- |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|VI-LayoutXLM| VI-LayoutXLM-base | SER | [ser_vi_layoutxlm_xfund_zh_udml.yml ](../../configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml )|**93.19%**|[trained model ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|LayoutXLM| LayoutXLM-base | SER | [ser_layoutxlm_xfund_zh.yml ](../../configs/kie/layoutlm_series/ser_layoutxlm_xfund_zh.yml )|90.38%|[trained model ](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|LayoutLM| LayoutLM-base | SER | [ser_layoutlm_xfund_zh.yml ](../../configs/kie/layoutlm_series/ser_layoutlm_xfund_zh.yml )|77.31%|[trained model ](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|LayoutLMv2| LayoutLMv2-base | SER | [ser_layoutlmv2_xfund_zh.yml ](../../configs/kie/layoutlm_series/ser_layoutlmv2_xfund_zh.yml )|85.44%|[trained model ](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|VI-LayoutXLM| VI-LayoutXLM-base | RE | [re_vi_layoutxlm_xfund_zh_udml.yml ](../../configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh_udml.yml )|**83.92%**|[trained model ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|LayoutXLM| LayoutXLM-base | RE | [re_layoutxlm_xfund_zh.yml ](../../configs/kie/layoutlm_series/re_layoutxlm_xfund_zh.yml )|74.83%|[trained model ](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar )|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
								
									
								 
							
							
								|LayoutLMv2| LayoutLMv2-base | RE | [re_layoutlmv2_xfund_zh.yml ](../../configs/kie/layoutlm_series/re_layoutlmv2_xfund_zh.yml )|67.77%|[trained model ](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar )|