| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | # | 
					
						
							|  |  |  | #    http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | import math | 
					
						
							|  |  |  | import cv2 | 
					
						
							|  |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  | import random | 
					
						
							| 
									
										
										
										
											2022-04-26 10:30:26 +00:00
										 |  |  | import copy | 
					
						
							| 
									
										
										
										
											2021-08-11 09:50:51 +00:00
										 |  |  | from PIL import Image | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | from .text_image_aug import tia_perspective, tia_stretch, tia_distort | 
					
						
							| 
									
										
										
										
											2022-06-28 15:06:53 +08:00
										 |  |  | from .abinet_aug import CVGeometry, CVDeterioration, CVColorJitter | 
					
						
							|  |  |  | from paddle.vision.transforms import Compose | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | class RecAug(object): | 
					
						
							| 
									
										
										
										
											2022-05-30 16:44:50 +08:00
										 |  |  |     def __init__(self, | 
					
						
							| 
									
										
										
										
											2022-05-30 16:47:12 +08:00
										 |  |  |                  tia_prob=0.4, | 
					
						
							| 
									
										
										
										
											2022-05-30 16:44:50 +08:00
										 |  |  |                  crop_prob=0.4, | 
					
						
							|  |  |  |                  reverse_prob=0.4, | 
					
						
							|  |  |  |                  noise_prob=0.4, | 
					
						
							|  |  |  |                  jitter_prob=0.4, | 
					
						
							|  |  |  |                  blur_prob=0.4, | 
					
						
							|  |  |  |                  hsv_aug_prob=0.4, | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.tia_prob = tia_prob | 
					
						
							|  |  |  |         self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob, | 
					
						
							|  |  |  |                                         jitter_prob, blur_prob, hsv_aug_prob) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							| 
									
										
										
										
											2022-05-30 16:44:50 +08:00
										 |  |  |         h, w, _ = img.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # tia | 
					
						
							|  |  |  |         if random.random() <= self.tia_prob: | 
					
						
							|  |  |  |             if h >= 20 and w >= 20: | 
					
						
							|  |  |  |                 img = tia_distort(img, random.randint(3, 6)) | 
					
						
							|  |  |  |                 img = tia_stretch(img, random.randint(3, 6)) | 
					
						
							|  |  |  |             img = tia_perspective(img) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # bda | 
					
						
							|  |  |  |         data['image'] = img | 
					
						
							|  |  |  |         data = self.bda(data) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class BaseDataAugmentation(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  crop_prob=0.4, | 
					
						
							|  |  |  |                  reverse_prob=0.4, | 
					
						
							|  |  |  |                  noise_prob=0.4, | 
					
						
							|  |  |  |                  jitter_prob=0.4, | 
					
						
							|  |  |  |                  blur_prob=0.4, | 
					
						
							|  |  |  |                  hsv_aug_prob=0.4, | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.crop_prob = crop_prob | 
					
						
							|  |  |  |         self.reverse_prob = reverse_prob | 
					
						
							|  |  |  |         self.noise_prob = noise_prob | 
					
						
							|  |  |  |         self.jitter_prob = jitter_prob | 
					
						
							|  |  |  |         self.blur_prob = blur_prob | 
					
						
							|  |  |  |         self.hsv_aug_prob = hsv_aug_prob | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         h, w, _ = img.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random.random() <= self.crop_prob and h >= 20 and w >= 20: | 
					
						
							|  |  |  |             img = get_crop(img) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random.random() <= self.blur_prob: | 
					
						
							|  |  |  |             img = blur(img) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random.random() <= self.hsv_aug_prob: | 
					
						
							|  |  |  |             img = hsv_aug(img) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random.random() <= self.jitter_prob: | 
					
						
							|  |  |  |             img = jitter(img) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random.random() <= self.noise_prob: | 
					
						
							|  |  |  |             img = add_gasuss_noise(img) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random.random() <= self.reverse_prob: | 
					
						
							|  |  |  |             img = 255 - img | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         data['image'] = img | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-28 15:06:53 +08:00
										 |  |  | class ABINetRecAug(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  geometry_p=0.5, | 
					
						
							|  |  |  |                  deterioration_p=0.25, | 
					
						
							|  |  |  |                  colorjitter_p=0.25, | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.transforms = Compose([ | 
					
						
							|  |  |  |             CVGeometry( | 
					
						
							|  |  |  |                 degrees=45, | 
					
						
							|  |  |  |                 translate=(0.0, 0.0), | 
					
						
							|  |  |  |                 scale=(0.5, 2.), | 
					
						
							|  |  |  |                 shear=(45, 15), | 
					
						
							|  |  |  |                 distortion=0.5, | 
					
						
							|  |  |  |                 p=geometry_p), CVDeterioration( | 
					
						
							|  |  |  |                     var=20, degrees=6, factor=4, p=deterioration_p), | 
					
						
							|  |  |  |             CVColorJitter( | 
					
						
							|  |  |  |                 brightness=0.5, | 
					
						
							|  |  |  |                 contrast=0.5, | 
					
						
							|  |  |  |                 saturation=0.5, | 
					
						
							|  |  |  |                 hue=0.1, | 
					
						
							|  |  |  |                 p=colorjitter_p) | 
					
						
							|  |  |  |         ]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         img = self.transforms(img) | 
					
						
							|  |  |  |         data['image'] = img | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  | class RecConAug(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  prob=0.5, | 
					
						
							|  |  |  |                  image_shape=(32, 320, 3), | 
					
						
							|  |  |  |                  max_text_length=25, | 
					
						
							|  |  |  |                  ext_data_num=1, | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.ext_data_num = ext_data_num | 
					
						
							|  |  |  |         self.prob = prob | 
					
						
							|  |  |  |         self.max_text_length = max_text_length | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.max_wh_ratio = self.image_shape[1] / self.image_shape[0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def merge_ext_data(self, data, ext_data): | 
					
						
							|  |  |  |         ori_w = round(data['image'].shape[1] / data['image'].shape[0] * | 
					
						
							|  |  |  |                       self.image_shape[0]) | 
					
						
							|  |  |  |         ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] * | 
					
						
							|  |  |  |                       self.image_shape[0]) | 
					
						
							|  |  |  |         data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0])) | 
					
						
							|  |  |  |         ext_data['image'] = cv2.resize(ext_data['image'], | 
					
						
							|  |  |  |                                        (ext_w, self.image_shape[0])) | 
					
						
							|  |  |  |         data['image'] = np.concatenate( | 
					
						
							|  |  |  |             [data['image'], ext_data['image']], axis=1) | 
					
						
							|  |  |  |         data["label"] += ext_data["label"] | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         rnd_num = random.random() | 
					
						
							|  |  |  |         if rnd_num > self.prob: | 
					
						
							|  |  |  |             return data | 
					
						
							|  |  |  |         for idx, ext_data in enumerate(data["ext_data"]): | 
					
						
							|  |  |  |             if len(data["label"]) + len(ext_data[ | 
					
						
							|  |  |  |                     "label"]) > self.max_text_length: | 
					
						
							|  |  |  |                 break | 
					
						
							|  |  |  |             concat_ratio = data['image'].shape[1] / data['image'].shape[ | 
					
						
							|  |  |  |                 0] + ext_data['image'].shape[1] / ext_data['image'].shape[0] | 
					
						
							|  |  |  |             if concat_ratio > self.max_wh_ratio: | 
					
						
							|  |  |  |                 break | 
					
						
							|  |  |  |             data = self.merge_ext_data(data, ext_data) | 
					
						
							|  |  |  |         data.pop("ext_data") | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-21 08:10:45 -06:00
										 |  |  | class ClsResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							| 
									
										
										
										
											2022-04-27 05:19:55 +00:00
										 |  |  |         norm_img, _ = resize_norm_img(img, self.image_shape) | 
					
						
							| 
									
										
										
										
											2020-11-21 08:10:45 -06:00
										 |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | class RecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  image_shape, | 
					
						
							|  |  |  |                  infer_mode=False, | 
					
						
							| 
									
										
										
										
											2021-10-12 14:47:39 +08:00
										 |  |  |                  character_dict_path='./ppocr/utils/ppocr_keys_v1.txt', | 
					
						
							| 
									
										
										
										
											2021-09-28 11:51:01 +08:00
										 |  |  |                  padding=True, | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.infer_mode = infer_mode | 
					
						
							| 
									
										
										
										
											2021-10-12 14:47:39 +08:00
										 |  |  |         self.character_dict_path = character_dict_path | 
					
						
							| 
									
										
										
										
											2021-09-28 11:51:01 +08:00
										 |  |  |         self.padding = padding | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							| 
									
										
										
										
											2021-10-12 14:47:39 +08:00
										 |  |  |         if self.infer_mode and self.character_dict_path is not None: | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |             norm_img, valid_ratio = resize_norm_img_chinese(img, | 
					
						
							|  |  |  |                                                             self.image_shape) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |             norm_img, valid_ratio = resize_norm_img(img, self.image_shape, | 
					
						
							|  |  |  |                                                     self.padding) | 
					
						
							| 
									
										
										
										
											2021-08-30 06:32:54 +00:00
										 |  |  |         data['image'] = norm_img | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |         data['valid_ratio'] = valid_ratio | 
					
						
							| 
									
										
										
										
											2021-08-30 06:32:54 +00:00
										 |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-08-09 11:29:43 +08:00
										 |  |  | class VLRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  image_shape, | 
					
						
							|  |  |  |                  infer_mode=False, | 
					
						
							|  |  |  |                  character_dict_path='./ppocr/utils/ppocr_keys_v1.txt', | 
					
						
							|  |  |  |                  padding=True, | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.infer_mode = infer_mode | 
					
						
							|  |  |  |         self.character_dict_path = character_dict_path | 
					
						
							|  |  |  |         self.padding = padding | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         imgC, imgH, imgW = self.image_shape | 
					
						
							|  |  |  |         resized_image = cv2.resize( | 
					
						
							|  |  |  |             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | 
					
						
							|  |  |  |         resized_w = imgW | 
					
						
							|  |  |  |         resized_image = resized_image.astype('float32') | 
					
						
							|  |  |  |         if self.image_shape[0] == 1: | 
					
						
							|  |  |  |             resized_image = resized_image / 255 | 
					
						
							|  |  |  |             norm_img = resized_image[np.newaxis, :] | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             norm_img = resized_image.transpose((2, 0, 1)) / 255 | 
					
						
							|  |  |  |         valid_ratio = min(1.0, float(resized_w / imgW)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         data['valid_ratio'] = valid_ratio | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-30 16:15:49 +08:00
										 |  |  | class SRNRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, num_heads, max_text_length, **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.num_heads = num_heads | 
					
						
							|  |  |  |         self.max_text_length = max_text_length | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         norm_img = resize_norm_img_srn(img, self.image_shape) | 
					
						
							|  |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ | 
					
						
							|  |  |  |             srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         data['encoder_word_pos'] = encoder_word_pos | 
					
						
							|  |  |  |         data['gsrm_word_pos'] = gsrm_word_pos | 
					
						
							|  |  |  |         data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1 | 
					
						
							|  |  |  |         data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2 | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-08-24 03:49:26 +00:00
										 |  |  | class SARRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.width_downsample_ratio = width_downsample_ratio | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							| 
									
										
										
										
											2021-09-27 14:58:10 +08:00
										 |  |  |         norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( | 
					
						
							|  |  |  |             img, self.image_shape, self.width_downsample_ratio) | 
					
						
							| 
									
										
										
										
											2021-08-24 03:49:26 +00:00
										 |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         data['resized_shape'] = resize_shape | 
					
						
							|  |  |  |         data['pad_shape'] = pad_shape | 
					
						
							|  |  |  |         data['valid_ratio'] = valid_ratio | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-02-28 21:48:00 +08:00
										 |  |  | class PRENResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, **kwargs): | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         Accroding to original paper's realization, it's a hard resize method here.  | 
					
						
							|  |  |  |         So maybe you should optimize it to fit for your task better. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         self.dst_h, self.dst_w = image_shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         resized_img = cv2.resize( | 
					
						
							|  |  |  |             img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR) | 
					
						
							|  |  |  |         resized_img = resized_img.transpose((2, 0, 1)) / 255 | 
					
						
							|  |  |  |         resized_img -= 0.5 | 
					
						
							|  |  |  |         resized_img /= 0.5 | 
					
						
							|  |  |  |         data['image'] = resized_img.astype(np.float32) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-08-09 11:29:43 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-12 13:53:29 +08:00
										 |  |  | class SPINRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  image_shape, | 
					
						
							|  |  |  |                  interpolation=2, | 
					
						
							|  |  |  |                  mean=(127.5, 127.5, 127.5), | 
					
						
							|  |  |  |                  std=(127.5, 127.5, 127.5), | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							| 
									
										
										
										
											2022-08-09 11:29:43 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-12 13:53:29 +08:00
										 |  |  |         self.mean = np.array(mean, dtype=np.float32) | 
					
						
							|  |  |  |         self.std = np.array(std, dtype=np.float32) | 
					
						
							|  |  |  |         self.interpolation = interpolation | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							| 
									
										
										
										
											2022-07-10 11:47:25 +08:00
										 |  |  |         img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | 
					
						
							| 
									
										
										
										
											2022-06-12 13:53:29 +08:00
										 |  |  |         # different interpolation type corresponding the OpenCV | 
					
						
							|  |  |  |         if self.interpolation == 0: | 
					
						
							|  |  |  |             interpolation = cv2.INTER_NEAREST | 
					
						
							|  |  |  |         elif self.interpolation == 1: | 
					
						
							|  |  |  |             interpolation = cv2.INTER_LINEAR | 
					
						
							|  |  |  |         elif self.interpolation == 2: | 
					
						
							|  |  |  |             interpolation = cv2.INTER_CUBIC | 
					
						
							|  |  |  |         elif self.interpolation == 3: | 
					
						
							|  |  |  |             interpolation = cv2.INTER_AREA | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise Exception("Unsupported interpolation type !!!") | 
					
						
							|  |  |  |         # Deal with the image error during image loading | 
					
						
							|  |  |  |         if img is None: | 
					
						
							|  |  |  |             return None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         img = cv2.resize(img, tuple(self.image_shape), interpolation) | 
					
						
							|  |  |  |         img = np.array(img, np.float32) | 
					
						
							|  |  |  |         img = np.expand_dims(img, -1) | 
					
						
							|  |  |  |         img = img.transpose((2, 0, 1)) | 
					
						
							|  |  |  |         # normalize the image | 
					
						
							|  |  |  |         img = img.copy().astype(np.float32) | 
					
						
							|  |  |  |         mean = np.float64(self.mean.reshape(1, -1)) | 
					
						
							|  |  |  |         stdinv = 1 / np.float64(self.std.reshape(1, -1)) | 
					
						
							|  |  |  |         img -= mean | 
					
						
							|  |  |  |         img *= stdinv | 
					
						
							|  |  |  |         data['image'] = img | 
					
						
							| 
									
										
										
										
											2022-05-22 13:16:52 +08:00
										 |  |  |         return data | 
					
						
							| 
									
										
										
										
											2022-02-28 21:48:00 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-08-09 11:29:43 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-28 15:06:53 +08:00
										 |  |  | class GrayRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  image_shape, | 
					
						
							|  |  |  |                  resize_type, | 
					
						
							|  |  |  |                  inter_type='Image.ANTIALIAS', | 
					
						
							|  |  |  |                  scale=True, | 
					
						
							|  |  |  |                  padding=False, | 
					
						
							|  |  |  |                  **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.resize_type = resize_type | 
					
						
							|  |  |  |         self.padding = padding | 
					
						
							|  |  |  |         self.inter_type = eval(inter_type) | 
					
						
							|  |  |  |         self.scale = scale | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | 
					
						
							|  |  |  |         image_shape = self.image_shape | 
					
						
							|  |  |  |         if self.padding: | 
					
						
							|  |  |  |             imgC, imgH, imgW = image_shape | 
					
						
							|  |  |  |             # todo: change to 0 and modified image shape | 
					
						
							|  |  |  |             h = img.shape[0] | 
					
						
							|  |  |  |             w = img.shape[1] | 
					
						
							|  |  |  |             ratio = w / float(h) | 
					
						
							|  |  |  |             if math.ceil(imgH * ratio) > imgW: | 
					
						
							|  |  |  |                 resized_w = imgW | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 resized_w = int(math.ceil(imgH * ratio)) | 
					
						
							|  |  |  |             resized_image = cv2.resize(img, (resized_w, imgH)) | 
					
						
							|  |  |  |             norm_img = np.expand_dims(resized_image, -1) | 
					
						
							|  |  |  |             norm_img = norm_img.transpose((2, 0, 1)) | 
					
						
							|  |  |  |             resized_image = norm_img.astype(np.float32) / 128. - 1. | 
					
						
							|  |  |  |             padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | 
					
						
							|  |  |  |             padding_im[:, :, 0:resized_w] = resized_image | 
					
						
							|  |  |  |             data['image'] = padding_im | 
					
						
							|  |  |  |             return data | 
					
						
							|  |  |  |         if self.resize_type == 'PIL': | 
					
						
							|  |  |  |             image_pil = Image.fromarray(np.uint8(img)) | 
					
						
							|  |  |  |             img = image_pil.resize(self.image_shape, self.inter_type) | 
					
						
							|  |  |  |             img = np.array(img) | 
					
						
							|  |  |  |         if self.resize_type == 'OpenCV': | 
					
						
							|  |  |  |             img = cv2.resize(img, self.image_shape) | 
					
						
							|  |  |  |         norm_img = np.expand_dims(img, -1) | 
					
						
							|  |  |  |         norm_img = norm_img.transpose((2, 0, 1)) | 
					
						
							|  |  |  |         if self.scale: | 
					
						
							|  |  |  |             data['image'] = norm_img.astype(np.float32) / 128. - 1. | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             data['image'] = norm_img.astype(np.float32) / 255. | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ABINetRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         norm_img, valid_ratio = resize_norm_img_abinet(img, self.image_shape) | 
					
						
							|  |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         data['valid_ratio'] = valid_ratio | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SVTRRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, padding=True, **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.padding = padding | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         norm_img, valid_ratio = resize_norm_img(img, self.image_shape, | 
					
						
							|  |  |  |                                                 self.padding) | 
					
						
							|  |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         data['valid_ratio'] = valid_ratio | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-08-01 22:09:12 +08:00
										 |  |  | class RobustScannerRecResizeImg(object): | 
					
						
							|  |  |  |     def __init__(self, image_shape, max_text_length, width_downsample_ratio=0.25, **kwargs): | 
					
						
							|  |  |  |         self.image_shape = image_shape | 
					
						
							|  |  |  |         self.width_downsample_ratio = width_downsample_ratio | 
					
						
							|  |  |  |         self.max_text_length = max_text_length | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __call__(self, data): | 
					
						
							|  |  |  |         img = data['image'] | 
					
						
							|  |  |  |         norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( | 
					
						
							|  |  |  |             img, self.image_shape, self.width_downsample_ratio) | 
					
						
							|  |  |  |         word_positons = np.array(range(0, self.max_text_length)).astype('int64') | 
					
						
							|  |  |  |         data['image'] = norm_img | 
					
						
							|  |  |  |         data['resized_shape'] = resize_shape | 
					
						
							|  |  |  |         data['pad_shape'] = pad_shape | 
					
						
							|  |  |  |         data['valid_ratio'] = valid_ratio | 
					
						
							|  |  |  |         data['word_positons'] = word_positons | 
					
						
							|  |  |  |         return data | 
					
						
							| 
									
										
										
										
											2022-06-28 15:06:53 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-08-24 03:49:26 +00:00
										 |  |  | def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25): | 
					
						
							|  |  |  |     imgC, imgH, imgW_min, imgW_max = image_shape | 
					
						
							|  |  |  |     h = img.shape[0] | 
					
						
							|  |  |  |     w = img.shape[1] | 
					
						
							|  |  |  |     valid_ratio = 1.0 | 
					
						
							|  |  |  |     # make sure new_width is an integral multiple of width_divisor. | 
					
						
							|  |  |  |     width_divisor = int(1 / width_downsample_ratio) | 
					
						
							|  |  |  |     # resize | 
					
						
							|  |  |  |     ratio = w / float(h) | 
					
						
							|  |  |  |     resize_w = math.ceil(imgH * ratio) | 
					
						
							|  |  |  |     if resize_w % width_divisor != 0: | 
					
						
							|  |  |  |         resize_w = round(resize_w / width_divisor) * width_divisor | 
					
						
							|  |  |  |     if imgW_min is not None: | 
					
						
							|  |  |  |         resize_w = max(imgW_min, resize_w) | 
					
						
							|  |  |  |     if imgW_max is not None: | 
					
						
							|  |  |  |         valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) | 
					
						
							|  |  |  |         resize_w = min(imgW_max, resize_w) | 
					
						
							|  |  |  |     resized_image = cv2.resize(img, (resize_w, imgH)) | 
					
						
							|  |  |  |     resized_image = resized_image.astype('float32') | 
					
						
							|  |  |  |     # norm  | 
					
						
							|  |  |  |     if image_shape[0] == 1: | 
					
						
							|  |  |  |         resized_image = resized_image / 255 | 
					
						
							|  |  |  |         resized_image = resized_image[np.newaxis, :] | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         resized_image = resized_image.transpose((2, 0, 1)) / 255 | 
					
						
							|  |  |  |     resized_image -= 0.5 | 
					
						
							|  |  |  |     resized_image /= 0.5 | 
					
						
							|  |  |  |     resize_shape = resized_image.shape | 
					
						
							|  |  |  |     padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) | 
					
						
							|  |  |  |     padding_im[:, :, 0:resize_w] = resized_image | 
					
						
							|  |  |  |     pad_shape = padding_im.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return padding_im, resize_shape, pad_shape, valid_ratio | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-28 11:51:01 +08:00
										 |  |  | def resize_norm_img(img, image_shape, padding=True): | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |     imgC, imgH, imgW = image_shape | 
					
						
							|  |  |  |     h = img.shape[0] | 
					
						
							|  |  |  |     w = img.shape[1] | 
					
						
							| 
									
										
										
										
											2021-09-28 11:51:01 +08:00
										 |  |  |     if not padding: | 
					
						
							|  |  |  |         resized_image = cv2.resize( | 
					
						
							|  |  |  |             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |         resized_w = imgW | 
					
						
							|  |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-09-28 11:51:01 +08:00
										 |  |  |         ratio = w / float(h) | 
					
						
							|  |  |  |         if math.ceil(imgH * ratio) > imgW: | 
					
						
							|  |  |  |             resized_w = imgW | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             resized_w = int(math.ceil(imgH * ratio)) | 
					
						
							|  |  |  |         resized_image = cv2.resize(img, (resized_w, imgH)) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |     resized_image = resized_image.astype('float32') | 
					
						
							|  |  |  |     if image_shape[0] == 1: | 
					
						
							|  |  |  |         resized_image = resized_image / 255 | 
					
						
							|  |  |  |         resized_image = resized_image[np.newaxis, :] | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         resized_image = resized_image.transpose((2, 0, 1)) / 255 | 
					
						
							|  |  |  |     resized_image -= 0.5 | 
					
						
							|  |  |  |     resized_image /= 0.5 | 
					
						
							|  |  |  |     padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | 
					
						
							|  |  |  |     padding_im[:, :, 0:resized_w] = resized_image | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |     valid_ratio = min(1.0, float(resized_w / imgW)) | 
					
						
							|  |  |  |     return padding_im, valid_ratio | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-06-03 00:10:02 +08:00
										 |  |  | def resize_norm_img_chinese(img, image_shape): | 
					
						
							|  |  |  |     imgC, imgH, imgW = image_shape | 
					
						
							|  |  |  |     # todo: change to 0 and modified image shape | 
					
						
							| 
									
										
										
										
											2020-12-30 16:15:49 +08:00
										 |  |  |     max_wh_ratio = imgW * 1.0 / imgH | 
					
						
							| 
									
										
										
										
											2020-06-03 00:10:02 +08:00
										 |  |  |     h, w = img.shape[0], img.shape[1] | 
					
						
							|  |  |  |     ratio = w * 1.0 / h | 
					
						
							| 
									
										
										
										
											2022-08-26 22:17:23 +08:00
										 |  |  |     max_wh_ratio = min(max(max_wh_ratio, ratio), max_wh_ratio) | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |     imgW = int(imgH * max_wh_ratio) | 
					
						
							| 
									
										
										
										
											2020-06-03 00:10:02 +08:00
										 |  |  |     if math.ceil(imgH * ratio) > imgW: | 
					
						
							|  |  |  |         resized_w = imgW | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         resized_w = int(math.ceil(imgH * ratio)) | 
					
						
							|  |  |  |     resized_image = cv2.resize(img, (resized_w, imgH)) | 
					
						
							|  |  |  |     resized_image = resized_image.astype('float32') | 
					
						
							|  |  |  |     if image_shape[0] == 1: | 
					
						
							|  |  |  |         resized_image = resized_image / 255 | 
					
						
							|  |  |  |         resized_image = resized_image[np.newaxis, :] | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         resized_image = resized_image.transpose((2, 0, 1)) / 255 | 
					
						
							|  |  |  |     resized_image -= 0.5 | 
					
						
							|  |  |  |     resized_image /= 0.5 | 
					
						
							|  |  |  |     padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | 
					
						
							|  |  |  |     padding_im[:, :, 0:resized_w] = resized_image | 
					
						
							| 
									
										
										
										
											2022-04-26 16:19:31 +08:00
										 |  |  |     valid_ratio = min(1.0, float(resized_w / imgW)) | 
					
						
							|  |  |  |     return padding_im, valid_ratio | 
					
						
							| 
									
										
										
										
											2020-06-03 00:10:02 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-30 16:15:49 +08:00
										 |  |  | def resize_norm_img_srn(img, image_shape): | 
					
						
							|  |  |  |     imgC, imgH, imgW = image_shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     img_black = np.zeros((imgH, imgW)) | 
					
						
							|  |  |  |     im_hei = img.shape[0] | 
					
						
							|  |  |  |     im_wid = img.shape[1] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if im_wid <= im_hei * 1: | 
					
						
							|  |  |  |         img_new = cv2.resize(img, (imgH * 1, imgH)) | 
					
						
							|  |  |  |     elif im_wid <= im_hei * 2: | 
					
						
							|  |  |  |         img_new = cv2.resize(img, (imgH * 2, imgH)) | 
					
						
							|  |  |  |     elif im_wid <= im_hei * 3: | 
					
						
							|  |  |  |         img_new = cv2.resize(img, (imgH * 3, imgH)) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         img_new = cv2.resize(img, (imgW, imgH)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     img_np = np.asarray(img_new) | 
					
						
							|  |  |  |     img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) | 
					
						
							|  |  |  |     img_black[:, 0:img_np.shape[1]] = img_np | 
					
						
							|  |  |  |     img_black = img_black[:, :, np.newaxis] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     row, col, c = img_black.shape | 
					
						
							|  |  |  |     c = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return np.reshape(img_black, (c, row, col)).astype(np.float32) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-28 15:06:53 +08:00
										 |  |  | def resize_norm_img_abinet(img, image_shape): | 
					
						
							|  |  |  |     imgC, imgH, imgW = image_shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     resized_image = cv2.resize( | 
					
						
							|  |  |  |         img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | 
					
						
							|  |  |  |     resized_w = imgW | 
					
						
							|  |  |  |     resized_image = resized_image.astype('float32') | 
					
						
							|  |  |  |     resized_image = resized_image / 255. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     mean = np.array([0.485, 0.456, 0.406]) | 
					
						
							|  |  |  |     std = np.array([0.229, 0.224, 0.225]) | 
					
						
							|  |  |  |     resized_image = ( | 
					
						
							|  |  |  |         resized_image - mean[None, None, ...]) / std[None, None, ...] | 
					
						
							|  |  |  |     resized_image = resized_image.transpose((2, 0, 1)) | 
					
						
							|  |  |  |     resized_image = resized_image.astype('float32') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     valid_ratio = min(1.0, float(resized_w / imgW)) | 
					
						
							|  |  |  |     return resized_image, valid_ratio | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-30 16:15:49 +08:00
										 |  |  | def srn_other_inputs(image_shape, num_heads, max_text_length): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     imgC, imgH, imgW = image_shape | 
					
						
							|  |  |  |     feature_dim = int((imgH / 8) * (imgW / 8)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     encoder_word_pos = np.array(range(0, feature_dim)).reshape( | 
					
						
							|  |  |  |         (feature_dim, 1)).astype('int64') | 
					
						
							|  |  |  |     gsrm_word_pos = np.array(range(0, max_text_length)).reshape( | 
					
						
							|  |  |  |         (max_text_length, 1)).astype('int64') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) | 
					
						
							|  |  |  |     gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( | 
					
						
							|  |  |  |         [1, max_text_length, max_text_length]) | 
					
						
							|  |  |  |     gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, | 
					
						
							|  |  |  |                                   [num_heads, 1, 1]) * [-1e9] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( | 
					
						
							|  |  |  |         [1, max_text_length, max_text_length]) | 
					
						
							|  |  |  |     gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, | 
					
						
							|  |  |  |                                   [num_heads, 1, 1]) * [-1e9] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return [ | 
					
						
							|  |  |  |         encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, | 
					
						
							|  |  |  |         gsrm_slf_attn_bias2 | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  | def flag(): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     flag | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     return 1 if random.random() > 0.5000001 else -1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-05-30 16:44:50 +08:00
										 |  |  | def hsv_aug(img): | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  |     """
 | 
					
						
							|  |  |  |     cvtColor | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | 
					
						
							|  |  |  |     delta = 0.001 * random.random() * flag() | 
					
						
							|  |  |  |     hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta) | 
					
						
							|  |  |  |     new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | 
					
						
							|  |  |  |     return new_img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def blur(img): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     blur | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     h, w, _ = img.shape | 
					
						
							|  |  |  |     if h > 10 and w > 10: | 
					
						
							|  |  |  |         return cv2.GaussianBlur(img, (5, 5), 1) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         return img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-06 16:50:33 +08:00
										 |  |  | def jitter(img): | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2020-07-06 16:50:33 +08:00
										 |  |  |     jitter | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  |     """
 | 
					
						
							|  |  |  |     w, h, _ = img.shape | 
					
						
							|  |  |  |     if h > 10 and w > 10: | 
					
						
							|  |  |  |         thres = min(w, h) | 
					
						
							|  |  |  |         s = int(random.random() * thres * 0.01) | 
					
						
							|  |  |  |         src_img = img.copy() | 
					
						
							|  |  |  |         for i in range(s): | 
					
						
							|  |  |  |             img[i:, i:, :] = src_img[:w - i, :h - i, :] | 
					
						
							|  |  |  |         return img | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         return img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def add_gasuss_noise(image, mean=0, var=0.1): | 
					
						
							| 
									
										
										
										
											2020-07-07 14:13:13 +08:00
										 |  |  |     """
 | 
					
						
							|  |  |  |     Gasuss noise | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     noise = np.random.normal(mean, var**0.5, image.shape) | 
					
						
							|  |  |  |     out = image + 0.5 * noise | 
					
						
							|  |  |  |     out = np.clip(out, 0, 255) | 
					
						
							|  |  |  |     out = np.uint8(out) | 
					
						
							|  |  |  |     return out | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_crop(image): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     random crop | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     h, w, _ = image.shape | 
					
						
							|  |  |  |     top_min = 1 | 
					
						
							|  |  |  |     top_max = 8 | 
					
						
							|  |  |  |     top_crop = int(random.randint(top_min, top_max)) | 
					
						
							| 
									
										
										
										
											2020-07-07 14:13:13 +08:00
										 |  |  |     top_crop = min(top_crop, h - 1) | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  |     crop_img = image.copy() | 
					
						
							|  |  |  |     ratio = random.randint(0, 1) | 
					
						
							|  |  |  |     if ratio: | 
					
						
							|  |  |  |         crop_img = crop_img[top_crop:h, :, :] | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         crop_img = crop_img[0:h - top_crop, :, :] | 
					
						
							|  |  |  |     return crop_img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def rad(x): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     rad | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     return x * np.pi / 180 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_warpR(config): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     get_warpR | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     anglex, angley, anglez, fov, w, h, r = \ | 
					
						
							|  |  |  |         config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r | 
					
						
							|  |  |  |     if w > 69 and w < 112: | 
					
						
							|  |  |  |         anglex = anglex * 1.5 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2)) | 
					
						
							|  |  |  |     # Homogeneous coordinate transformation matrix | 
					
						
							|  |  |  |     rx = np.array([[1, 0, 0, 0], | 
					
						
							|  |  |  |                    [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [ | 
					
						
							|  |  |  |                        0, | 
					
						
							|  |  |  |                        -np.sin(rad(anglex)), | 
					
						
							|  |  |  |                        np.cos(rad(anglex)), | 
					
						
							|  |  |  |                        0, | 
					
						
							|  |  |  |                    ], [0, 0, 0, 1]], np.float32) | 
					
						
							|  |  |  |     ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], | 
					
						
							|  |  |  |                    [0, 1, 0, 0], [ | 
					
						
							|  |  |  |                        -np.sin(rad(angley)), | 
					
						
							|  |  |  |                        0, | 
					
						
							|  |  |  |                        np.cos(rad(angley)), | 
					
						
							|  |  |  |                        0, | 
					
						
							|  |  |  |                    ], [0, 0, 0, 1]], np.float32) | 
					
						
							|  |  |  |     rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], | 
					
						
							|  |  |  |                    [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], | 
					
						
							|  |  |  |                    [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) | 
					
						
							|  |  |  |     r = rx.dot(ry).dot(rz) | 
					
						
							|  |  |  |     # generate 4 points | 
					
						
							|  |  |  |     pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) | 
					
						
							|  |  |  |     p1 = np.array([0, 0, 0, 0], np.float32) - pcenter | 
					
						
							|  |  |  |     p2 = np.array([w, 0, 0, 0], np.float32) - pcenter | 
					
						
							|  |  |  |     p3 = np.array([0, h, 0, 0], np.float32) - pcenter | 
					
						
							|  |  |  |     p4 = np.array([w, h, 0, 0], np.float32) - pcenter | 
					
						
							|  |  |  |     dst1 = r.dot(p1) | 
					
						
							|  |  |  |     dst2 = r.dot(p2) | 
					
						
							|  |  |  |     dst3 = r.dot(p3) | 
					
						
							|  |  |  |     dst4 = r.dot(p4) | 
					
						
							| 
									
										
										
										
											2020-07-07 14:13:13 +08:00
										 |  |  |     list_dst = np.array([dst1, dst2, dst3, dst4]) | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  |     org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) | 
					
						
							|  |  |  |     dst = np.zeros((4, 2), np.float32) | 
					
						
							|  |  |  |     # Project onto the image plane | 
					
						
							| 
									
										
										
										
											2020-07-07 14:13:13 +08:00
										 |  |  |     dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0] | 
					
						
							|  |  |  |     dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-06 13:53:12 +08:00
										 |  |  |     warpR = cv2.getPerspectiveTransform(org, dst) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     dst1, dst2, dst3, dst4 = dst | 
					
						
							|  |  |  |     r1 = int(min(dst1[1], dst2[1])) | 
					
						
							|  |  |  |     r2 = int(max(dst3[1], dst4[1])) | 
					
						
							|  |  |  |     c1 = int(min(dst1[0], dst3[0])) | 
					
						
							|  |  |  |     c2 = int(max(dst2[0], dst4[0])) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     try: | 
					
						
							|  |  |  |         ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         dx = -c1 | 
					
						
							|  |  |  |         dy = -r1 | 
					
						
							|  |  |  |         T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]]) | 
					
						
							|  |  |  |         ret = T1.dot(warpR) | 
					
						
							|  |  |  |     except: | 
					
						
							|  |  |  |         ratio = 1.0 | 
					
						
							|  |  |  |         T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]]) | 
					
						
							|  |  |  |         ret = T1 | 
					
						
							|  |  |  |     return ret, (-r1, -c1), ratio, dst | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_warpAffine(config): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     get_warpAffine | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     anglez = config.anglez | 
					
						
							|  |  |  |     rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0], | 
					
						
							|  |  |  |                    [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32) | 
					
						
							|  |  |  |     return rz |