| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | # | 
					
						
							|  |  |  | #    http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | import paddle | 
					
						
							|  |  |  | from paddle import ParamAttr | 
					
						
							|  |  |  | import paddle.nn as nn | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  | import paddle.nn.functional as F | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | __all__ = ["ResNet"] | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | class ConvBNLayer(nn.Layer): | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |     def __init__( | 
					
						
							|  |  |  |             self, | 
					
						
							|  |  |  |             in_channels, | 
					
						
							|  |  |  |             out_channels, | 
					
						
							|  |  |  |             kernel_size, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             groups=1, | 
					
						
							|  |  |  |             is_vd_mode=False, | 
					
						
							|  |  |  |             act=None, | 
					
						
							|  |  |  |             name=None, ): | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         super(ConvBNLayer, self).__init__() | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.is_vd_mode = is_vd_mode | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  |         self._pool2d_avg = nn.AvgPool2D( | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |             kernel_size=stride, stride=stride, padding=0, ceil_mode=True) | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  |         self._conv = nn.Conv2D( | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |             in_channels=in_channels, | 
					
						
							|  |  |  |             out_channels=out_channels, | 
					
						
							|  |  |  |             kernel_size=kernel_size, | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |             stride=1 if is_vd_mode else stride, | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |             padding=(kernel_size - 1) // 2, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             groups=groups, | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |             weight_attr=ParamAttr(name=name + "_weights"), | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             bias_attr=False) | 
					
						
							|  |  |  |         if name == "conv1": | 
					
						
							|  |  |  |             bn_name = "bn_" + name | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             bn_name = "bn" + name[3:] | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |         self._batch_norm = nn.BatchNorm( | 
					
						
							|  |  |  |             out_channels, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             act=act, | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |             param_attr=ParamAttr(name=bn_name + '_scale'), | 
					
						
							|  |  |  |             bias_attr=ParamAttr(bn_name + '_offset'), | 
					
						
							|  |  |  |             moving_mean_name=bn_name + '_mean', | 
					
						
							|  |  |  |             moving_variance_name=bn_name + '_variance') | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         if self.is_vd_mode: | 
					
						
							|  |  |  |             inputs = self._pool2d_avg(inputs) | 
					
						
							|  |  |  |         y = self._conv(inputs) | 
					
						
							|  |  |  |         y = self._batch_norm(y) | 
					
						
							|  |  |  |         return y | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | class BottleneckBlock(nn.Layer): | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  in_channels, | 
					
						
							|  |  |  |                  out_channels, | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |                  stride, | 
					
						
							|  |  |  |                  shortcut=True, | 
					
						
							|  |  |  |                  if_first=False, | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |                  name=None): | 
					
						
							|  |  |  |         super(BottleneckBlock, self).__init__() | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         self.conv0 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=in_channels, | 
					
						
							|  |  |  |             out_channels=out_channels, | 
					
						
							|  |  |  |             kernel_size=1, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             act='relu', | 
					
						
							|  |  |  |             name=name + "_branch2a") | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         self.conv1 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=out_channels, | 
					
						
							|  |  |  |             out_channels=out_channels, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             stride=stride, | 
					
						
							|  |  |  |             act='relu', | 
					
						
							|  |  |  |             name=name + "_branch2b") | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         self.conv2 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=out_channels, | 
					
						
							|  |  |  |             out_channels=out_channels * 4, | 
					
						
							|  |  |  |             kernel_size=1, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             act=None, | 
					
						
							|  |  |  |             name=name + "_branch2c") | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |         if not shortcut: | 
					
						
							|  |  |  |             self.short = ConvBNLayer( | 
					
						
							|  |  |  |                 in_channels=in_channels, | 
					
						
							|  |  |  |                 out_channels=out_channels * 4, | 
					
						
							|  |  |  |                 kernel_size=1, | 
					
						
							|  |  |  |                 stride=stride, | 
					
						
							|  |  |  |                 is_vd_mode=not if_first and stride[0] != 1, | 
					
						
							|  |  |  |                 name=name + "_branch1") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.shortcut = shortcut | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         y = self.conv0(inputs) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         conv1 = self.conv1(y) | 
					
						
							|  |  |  |         conv2 = self.conv2(conv1) | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |         if self.shortcut: | 
					
						
							|  |  |  |             short = inputs | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             short = self.short(inputs) | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  |         y = paddle.add(x=short, y=conv2) | 
					
						
							|  |  |  |         y = F.relu(y) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         return y | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | class BasicBlock(nn.Layer): | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |     def __init__(self, | 
					
						
							|  |  |  |                  in_channels, | 
					
						
							|  |  |  |                  out_channels, | 
					
						
							|  |  |  |                  stride, | 
					
						
							|  |  |  |                  shortcut=True, | 
					
						
							|  |  |  |                  if_first=False, | 
					
						
							|  |  |  |                  name=None): | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         super(BasicBlock, self).__init__() | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |         self.stride = stride | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         self.conv0 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=in_channels, | 
					
						
							|  |  |  |             out_channels=out_channels, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             stride=stride, | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |             act='relu', | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             name=name + "_branch2a") | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |         self.conv1 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=out_channels, | 
					
						
							|  |  |  |             out_channels=out_channels, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							| 
									
										
										
										
											2020-05-10 16:26:57 +08:00
										 |  |  |             act=None, | 
					
						
							|  |  |  |             name=name + "_branch2b") | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if not shortcut: | 
					
						
							|  |  |  |             self.short = ConvBNLayer( | 
					
						
							|  |  |  |                 in_channels=in_channels, | 
					
						
							|  |  |  |                 out_channels=out_channels, | 
					
						
							|  |  |  |                 kernel_size=1, | 
					
						
							|  |  |  |                 stride=stride, | 
					
						
							|  |  |  |                 is_vd_mode=not if_first and stride[0] != 1, | 
					
						
							|  |  |  |                 name=name + "_branch1") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.shortcut = shortcut | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         y = self.conv0(inputs) | 
					
						
							|  |  |  |         conv1 = self.conv1(y) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.shortcut: | 
					
						
							|  |  |  |             short = inputs | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             short = self.short(inputs) | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  |         y = paddle.add(x=short, y=conv1) | 
					
						
							|  |  |  |         y = F.relu(y) | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |         return y | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ResNet(nn.Layer): | 
					
						
							|  |  |  |     def __init__(self, in_channels=3, layers=50, **kwargs): | 
					
						
							|  |  |  |         super(ResNet, self).__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.layers = layers | 
					
						
							|  |  |  |         supported_layers = [18, 34, 50, 101, 152, 200] | 
					
						
							|  |  |  |         assert layers in supported_layers, \ | 
					
						
							|  |  |  |             "supported layers are {} but input layer is {}".format( | 
					
						
							|  |  |  |                 supported_layers, layers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if layers == 18: | 
					
						
							|  |  |  |             depth = [2, 2, 2, 2] | 
					
						
							|  |  |  |         elif layers == 34 or layers == 50: | 
					
						
							|  |  |  |             depth = [3, 4, 6, 3] | 
					
						
							|  |  |  |         elif layers == 101: | 
					
						
							|  |  |  |             depth = [3, 4, 23, 3] | 
					
						
							|  |  |  |         elif layers == 152: | 
					
						
							|  |  |  |             depth = [3, 8, 36, 3] | 
					
						
							|  |  |  |         elif layers == 200: | 
					
						
							|  |  |  |             depth = [3, 12, 48, 3] | 
					
						
							|  |  |  |         num_channels = [64, 256, 512, | 
					
						
							|  |  |  |                         1024] if layers >= 50 else [64, 64, 128, 256] | 
					
						
							|  |  |  |         num_filters = [64, 128, 256, 512] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.conv1_1 = ConvBNLayer( | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  |             in_channels=in_channels, | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |             out_channels=32, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             act='relu', | 
					
						
							|  |  |  |             name="conv1_1") | 
					
						
							|  |  |  |         self.conv1_2 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=32, | 
					
						
							|  |  |  |             out_channels=32, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             act='relu', | 
					
						
							|  |  |  |             name="conv1_2") | 
					
						
							|  |  |  |         self.conv1_3 = ConvBNLayer( | 
					
						
							|  |  |  |             in_channels=32, | 
					
						
							|  |  |  |             out_channels=64, | 
					
						
							|  |  |  |             kernel_size=3, | 
					
						
							|  |  |  |             stride=1, | 
					
						
							|  |  |  |             act='relu', | 
					
						
							|  |  |  |             name="conv1_3") | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  |         self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.block_list = [] | 
					
						
							|  |  |  |         if layers >= 50: | 
					
						
							|  |  |  |             for block in range(len(depth)): | 
					
						
							|  |  |  |                 shortcut = False | 
					
						
							|  |  |  |                 for i in range(depth[block]): | 
					
						
							|  |  |  |                     if layers in [101, 152, 200] and block == 2: | 
					
						
							|  |  |  |                         if i == 0: | 
					
						
							|  |  |  |                             conv_name = "res" + str(block + 2) + "a" | 
					
						
							|  |  |  |                         else: | 
					
						
							|  |  |  |                             conv_name = "res" + str(block + 2) + "b" + str(i) | 
					
						
							|  |  |  |                     else: | 
					
						
							|  |  |  |                         conv_name = "res" + str(block + 2) + chr(97 + i) | 
					
						
							| 
									
										
										
										
											2020-10-13 17:13:33 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |                     if i == 0 and block != 0: | 
					
						
							|  |  |  |                         stride = (2, 1) | 
					
						
							|  |  |  |                     else: | 
					
						
							|  |  |  |                         stride = (1, 1) | 
					
						
							|  |  |  |                     bottleneck_block = self.add_sublayer( | 
					
						
							|  |  |  |                         'bb_%d_%d' % (block, i), | 
					
						
							|  |  |  |                         BottleneckBlock( | 
					
						
							|  |  |  |                             in_channels=num_channels[block] | 
					
						
							|  |  |  |                             if i == 0 else num_filters[block] * 4, | 
					
						
							|  |  |  |                             out_channels=num_filters[block], | 
					
						
							|  |  |  |                             stride=stride, | 
					
						
							|  |  |  |                             shortcut=shortcut, | 
					
						
							|  |  |  |                             if_first=block == i == 0, | 
					
						
							|  |  |  |                             name=conv_name)) | 
					
						
							|  |  |  |                     shortcut = True | 
					
						
							|  |  |  |                     self.block_list.append(bottleneck_block) | 
					
						
							| 
									
										
										
										
											2021-04-29 12:34:23 +08:00
										 |  |  |                 self.out_channels = num_filters[block] * 4 | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  |         else: | 
					
						
							|  |  |  |             for block in range(len(depth)): | 
					
						
							|  |  |  |                 shortcut = False | 
					
						
							|  |  |  |                 for i in range(depth[block]): | 
					
						
							|  |  |  |                     conv_name = "res" + str(block + 2) + chr(97 + i) | 
					
						
							|  |  |  |                     if i == 0 and block != 0: | 
					
						
							|  |  |  |                         stride = (2, 1) | 
					
						
							|  |  |  |                     else: | 
					
						
							|  |  |  |                         stride = (1, 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     basic_block = self.add_sublayer( | 
					
						
							|  |  |  |                         'bb_%d_%d' % (block, i), | 
					
						
							|  |  |  |                         BasicBlock( | 
					
						
							|  |  |  |                             in_channels=num_channels[block] | 
					
						
							|  |  |  |                             if i == 0 else num_filters[block], | 
					
						
							|  |  |  |                             out_channels=num_filters[block], | 
					
						
							|  |  |  |                             stride=stride, | 
					
						
							|  |  |  |                             shortcut=shortcut, | 
					
						
							|  |  |  |                             if_first=block == i == 0, | 
					
						
							|  |  |  |                             name=conv_name)) | 
					
						
							|  |  |  |                     shortcut = True | 
					
						
							|  |  |  |                     self.block_list.append(basic_block) | 
					
						
							|  |  |  |                 self.out_channels = num_filters[block] | 
					
						
							| 
									
										
										
										
											2020-11-09 18:29:33 +08:00
										 |  |  |         self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) | 
					
						
							| 
									
										
										
										
											2020-10-16 20:19:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         y = self.conv1_1(inputs) | 
					
						
							|  |  |  |         y = self.conv1_2(y) | 
					
						
							|  |  |  |         y = self.conv1_3(y) | 
					
						
							|  |  |  |         y = self.pool2d_max(y) | 
					
						
							|  |  |  |         for block in self.block_list: | 
					
						
							|  |  |  |             y = block(y) | 
					
						
							|  |  |  |         y = self.out_pool(y) | 
					
						
							|  |  |  |         return y |