2024-07-24 20:00:15 +08:00
---
comments: true
---
# PasreQ
## 1. Introduction
Paper:
> [Scene Text Recognition with Permuted Autoregressive Sequence Models](https://arxiv.org/abs/2207.06966)
> Darwin Bautista, Rowel Atienza
> ECCV, 2021
Using real datasets (real) and synthetic datsets (synth) for training respectively, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets.
- The real datasets include COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR and OpenVINO datasets.
- The synthesis datasets include MJSynth and SynthText datasets.
the algorithm reproduction effect is as follows:
|Training Dataset|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- | --- |
2024-08-30 18:35:25 +08:00
|Synth|ParseQ|VIT|[rec_vit_parseq.yml ](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_vit_parseq.yml )|91.24%|[train model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz )|
|Real|ParseQ|VIT|[rec_vit_parseq.yml ](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_vit_parseq.yml )|94.74%|[train model ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz )|
2024-07-24 20:00:15 +08:00
## 2. Environment
Please refer to ["Environment Preparation" ](../../ppocr/environment.en.md ) to configure the PaddleOCR environment, and refer to ["Project Clone" ](../../ppocr/blog/clone.en.md )to clone the project code.
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial ](../../ppocr/model_train/recognition.en.md ). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file** .
### Training
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```bash linenums="1"
# Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml
# Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml
```
### Evaluation
```bash linenums="1"
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
### Prediction
```bash linenums="1"
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
## 4. Inference and Deployment
### 4.1 Python Inference
First, the model saved during the SAR text recognition training process is converted into an inference model. ( [Model download link ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz ) ), you can use the following command to convert:
```bash linenums="1"
python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq
```
For SAR text recognition model inference, the following commands can be executed:
```bash linenums="1"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False
```
### 4.2 C++ Inference
Not supported
### 4.3 Serving
Not supported
### 4.4 More
Not supported
## 5. FAQ
## Citation
```bibtex
@InProceedings {bautista2022parseq,
title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
author={Bautista, Darwin and Atienza, Rowel},
booktitle={European Conference on Computer Vision},
pages={178--196},
month={10},
year={2022},
publisher={Springer Nature Switzerland},
address={Cham},
doi={10.1007/978-3-031-19815-1_11},
url={https://doi.org/10.1007/978-3-031-19815-1_11}
}
```