> [An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717)
> Baoguang Shi, Xiang Bai, Cong Yao
> IEEE, 2015
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code.
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
### Training
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```bash linenums="1"
# Single GPU training (long training period, not recommended)
First, the model saved during the CRNN text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_CRNN_train.tar) ), you can use the following command to convert:
With the inference model prepared, refer to the [cpp infer](../../ppocr/infer_deploy/cpp_infer.en.md) tutorial for C++ inference.
### 4.3 Serving
With the inference model prepared, refer to the [pdserving](../../ppocr/infer_deploy/paddle_server.en.md) tutorial for service deployment by Paddle Serving.
### 4.4 More
More deployment schemes supported for CRNN:
- Paddle2ONNX: with the inference model prepared, please refer to the [paddle2onnx](../../ppocr/infer_deploy/paddle2onnx.en.md) tutorial.
## 5. FAQ
## Citation
```bibtex
@ARTICLE{7801919,
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition},