The primary purpose of text image rectification is to perform geometric transformations on images to correct distortions, inclinations, perspective deformations, etc., in the document images for more accurate subsequent text recognition.
> ❗ Before starting quickly, please first install the PaddleOCR wheel package. For details, please refer to the [installation tutorial](../installation.md).
You can also integrate the model inference from the image rectification module into your project. Before running the following code, please download the [sample image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/doc_test.jpg) locally.
The meanings of the parameters in the result are as follows:
-`input_path`: Indicates the path of the image to be rectified
-`doctr_img`: Indicates the rectified image result. Due to the large amount of data, it is not convenient to print directly, so it is replaced here with `...`. You can use `res.save_to_img()` to save the prediction result as an image, and `res.save_to_json()` to save the prediction result as a json file.
<td>Minimum subgraph size for TensorRT when using the Paddle Inference TensorRT subgraph engine.</td>
<td><code>int</code></td>
<td><code>3</code></td>
</tr>
<tr>
<td><code>precision</code></td>
<td>Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.<br/><b>Options:</b><code>fp32</code>, <code>fp16</code>, etc.</td>
Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.
* Among them, `model_name` must be specified. After specifying `model_name`, the default model parameters built into PaddleX are used. When `model_dir` is specified, the user-defined model is used.
* Call the `predict()` method of the image rectification model for inference prediction. This method will return a result list. Additionally, this module also provides a `predict_iter()` method. Both methods are consistent in terms of parameter acceptance and result return. The difference is that `predict_iter()` returns a `generator`, which can process and obtain prediction results step by step, suitable for handling large datasets or scenarios where memory saving is desired. You can choose to use either of these methods according to your actual needs. The `predict()` method has parameters `input` and `batch_size`, with specific explanations as follows:
- Local image or PDF file path: <code>/root/data/img.jpg</code>;
-<b>URL</b> of image or PDF file: e.g., <ahref="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_doc_preprocessor_002.png">example</a>;
-<b>Local directory</b>: directory containing images for prediction, e.g., <code>/root/data/</code> (Note: directories containing PDF files are not supported; PDFs must be specified by exact file path)</li>
<li><b>List</b>: Elements must be of the above types, e.g., <code>[numpy.ndarray, numpy.ndarray]</code>, <code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>, <code>["/root/data1", "/root/data2"]</code></li>
* Process the prediction results. The prediction result for each sample is a corresponding Result object, which supports printing, saving as an image, and saving as a `json` file:
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Parameter</th>
<th>Type</th>
<th>Parameter Description</th>
<th>Default Value</th>
</tr>
</thead>
<tr>
<tdrowspan ="3"><code>print()</code></td>
<tdrowspan ="3">Print result to terminal</td>
<td><code>format_json</code></td>
<td><code>bool</code></td>
<td>Whether to format the output content using <code>JSON</code> indentation</td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable, effective only when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters into <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> will retain the original characters, effective only when <code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<tdrowspan ="3"><code>save_to_json()</code></td>
<tdrowspan ="3">Save the result as a json format file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The path to save the file. When specified as a directory, the saved file is named consistent with the input file type.</td>
<td>None</td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable, effective only when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters into <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> will retain the original characters, effective only when <code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>save_to_img()</code></td>
<td>Save the result as an image format file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The path to save the file. When specified as a directory, the saved file is named consistent with the input file type.</td>
<td>None</td>
</tr>
</table>
* Additionally, the result can be obtained through attributes that provide the visualized images with results and the prediction results, as follows:
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tr>
<tdrowspan ="1"><code>json</code></td>
<tdrowspan ="1">Get the prediction result in <code>json</code> format</td>
</tr>
<tr>
<tdrowspan ="1"><code>img</code></td>
<tdrowspan ="1">Get the visualized image in <code>dict</code> format</td>
</tr>
</table>
## 4. Secondary Development
The current module does not support fine-tuning training and only supports inference integration. Concerning fine-tuning training for this module, there are plans to support it in the future.