PaddleOCR/docs/version3.x/module_usage/text_image_unwarping.en.md

316 lines
12 KiB
Markdown
Raw Normal View History

---
comments: true
---
# Text Image Rectification Module Usage Tutorial
## 1. Overview
The primary purpose of text image rectification is to perform geometric transformations on images to correct distortions, inclinations, perspective deformations, etc., in the document images for more accurate subsequent text recognition.
## 2. Supported Model List
<table>
<thead>
<tr>
<th>Model</th><th>Model Download Link</th>
<th>CER</th>
<th>Model Storage Size (M)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVDoc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/UVDoc_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/UVDoc_pretrained.pdparams">Training Model</a></td>
<td>0.179</td>
<td>30.3 M</td>
<td>High-accuracy text image rectification model</td>
</tr>
</tbody>
</table>
<strong>Test Environment Description:</strong>
<ul>
<li><b>Performance Test Environment</b>
<ul>
<li><strong>Test Dataset:</strong> <a href="https://www3.cs.stonybrook.edu/~cvl/docunet.html">DocUNet benchmark</a> dataset.</li>
<li><strong>Hardware Configuration:</strong>
<ul>
<li>GPU: NVIDIA Tesla T4</li>
<li>CPU: Intel Xeon Gold 6271C @ 2.60GHz</li>
<li>Other Environment: Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2</li>
</ul>
</li>
</ul>
</li>
<li><b>Inference Mode Explanation</b></li>
</ul>
<table border="1">
<thead>
<tr>
<th>Mode</th>
<th>GPU Configuration</th>
<th>CPU Configuration</th>
<th>Acceleration Technology Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Mode</td>
<td>FP32 Precision / No TRT Acceleration</td>
<td>FP32 Precision / 8 Threads</td>
<td>PaddleInference</td>
</tr>
<tr>
<td>High-Performance Mode</td>
<td>Choose the optimal combination of prior precision type and acceleration strategy</td>
<td>FP32 Precision / 8 Threads</td>
<td>Choose the optimal prior backend (Paddle/OpenVINO/TRT, etc.)</td>
</tr>
</tbody>
</table>
## 3. Quick Start
> ❗ Before starting quickly, please first install the PaddleOCR wheel package. For details, please refer to the [installation tutorial](../installation.md).
You can quickly experience it with one command:
```bash
paddleocr text_image_unwarping -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/doc_test.jpg
```
You can also integrate the model inference from the image rectification module into your project. Before running the following code, please download the [sample image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/doc_test.jpg) locally.
```python
from paddleocr import TextImageUnwarping
model = TextImageUnwarping(model_name="UVDoc")
output = model.predict("doc_test.jpg", batch_size=1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")
```
After running, the result obtained is:
```bash
{'res': {'input_path': 'doc_test.jpg', 'page_index': None, 'doctr_img': '...'}}
```
The meanings of the parameters in the result are as follows:
- `input_path`: Indicates the path of the image to be rectified
- `doctr_img`: Indicates the rectified image result. Due to the large amount of data, it is not convenient to print directly, so it is replaced here with `...`. You can use `res.save_to_img()` to save the prediction result as an image, and `res.save_to_json()` to save the prediction result as a json file.
The visualized image is as follows:
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/modules/image_unwarp/doc_test_res.jpg">
The relevant methods, parameters, etc., are described as follows:
* `TextImageUnwarping` instantiates the image rectification model (taking `UVDoc` as an example here), with specific explanations as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>model_name</code></td>
<td>Name of the model</td>
<td><code>str</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>model_dir</code></td>
<td>Model storage path</td>
<td><code>str</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>device</code></td>
<td>Device(s) to use for inference.<br/>
<b>Examples:</b> <code>cpu</code>, <code>gpu</code>, <code>npu</code>, <code>gpu:0</code>, <code>gpu:0,1</code>.<br/>
If multiple devices are specified, inference will be performed in parallel. Note that parallel inference is not always supported.<br/>
By default, GPU 0 will be used if available; otherwise, the CPU will be used.
</td>
<td><code>str</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>enable_hpi</code></td>
<td>Whether to use the high performance inference.</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>use_tensorrt</code></td>
<td>Whether to use the Paddle Inference TensorRT subgraph engine.</br>
For Paddle with CUDA version 11.8, the compatible TensorRT version is 8.x (x>=6), and it is recommended to install TensorRT 8.6.1.6.</br>
For Paddle with CUDA version 12.6, the compatible TensorRT version is 10.x (x>=5), and it is recommended to install TensorRT 10.5.0.18.
</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>min_subgraph_size</code></td>
<td>Minimum subgraph size for TensorRT when using the Paddle Inference TensorRT subgraph engine.</td>
<td><code>int</code></td>
<td><code>3</code></td>
</tr>
<tr>
<td><code>precision</code></td>
<td>Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.<br/><b>Options:</b> <code>fp32</code>, <code>fp16</code>, etc.</td>
<td><code>str</code></td>
<td><code>fp32</code></td>
</tr>
<tr>
<td><code>enable_mkldnn</code></td>
<td>
2025-06-09 10:53:44 +08:00
Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.
</td>
<td><code>bool</code></td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>cpu_threads</code></td>
<td>Number of threads to use for inference on CPUs.</td>
<td><code>int</code></td>
<td><code>10</code></td>
</tr>
</tbody>
</table>
* Among them, `model_name` must be specified. After specifying `model_name`, the default model parameters built into PaddleX are used. When `model_dir` is specified, the user-defined model is used.
* Call the `predict()` method of the image rectification model for inference prediction. This method will return a result list. Additionally, this module also provides a `predict_iter()` method. Both methods are consistent in terms of parameter acceptance and result return. The difference is that `predict_iter()` returns a `generator`, which can process and obtain prediction results step by step, suitable for handling large datasets or scenarios where memory saving is desired. You can choose to use either of these methods according to your actual needs. The `predict()` method has parameters `input` and `batch_size`, with specific explanations as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tr>
<td><code>input</code></td>
<td>Input data to be predicted. Required. Supports multiple input types:
<ul>
<li><b>Python Var</b>: e.g., <code>numpy.ndarray</code> representing image data</li>
<li><b>str</b>:
- Local image or PDF file path: <code>/root/data/img.jpg</code>;
- <b>URL</b> of image or PDF file: e.g., <a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_doc_preprocessor_002.png">example</a>;
- <b>Local directory</b>: directory containing images for prediction, e.g., <code>/root/data/</code> (Note: directories containing PDF files are not supported; PDFs must be specified by exact file path)</li>
<li><b>List</b>: Elements must be of the above types, e.g., <code>[numpy.ndarray, numpy.ndarray]</code>, <code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>, <code>["/root/data1", "/root/data2"]</code></li>
</ul>
</td>
<td><code>Python Var|str|list</code></td>
<td></td>
</tr>
<tr>
<td><code>batch_size</code></td>
<td>Batch size, positive integer.</td>
<td><code>int</code></td>
<td>1</td>
</tr>
</table>
* Process the prediction results. The prediction result for each sample is a corresponding Result object, which supports printing, saving as an image, and saving as a `json` file:
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Parameter</th>
<th>Type</th>
<th>Parameter Description</th>
<th>Default Value</th>
</tr>
</thead>
<tr>
<td rowspan = "3"><code>print()</code></td>
<td rowspan = "3">Print result to terminal</td>
<td><code>format_json</code></td>
<td><code>bool</code></td>
<td>Whether to format the output content using <code>JSON</code> indentation</td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable, effective only when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters into <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> will retain the original characters, effective only when <code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td rowspan = "3"><code>save_to_json()</code></td>
<td rowspan = "3">Save the result as a json format file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The path to save the file. When specified as a directory, the saved file is named consistent with the input file type.</td>
<td>None</td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable, effective only when <code>format_json</code> is <code>True</code></td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters into <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> will retain the original characters, effective only when <code>format_json</code> is <code>True</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>save_to_img()</code></td>
<td>Save the result as an image format file</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The path to save the file. When specified as a directory, the saved file is named consistent with the input file type.</td>
<td>None</td>
</tr>
</table>
* Additionally, the result can be obtained through attributes that provide the visualized images with results and the prediction results, as follows:
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tr>
<td rowspan = "1"><code>json</code></td>
<td rowspan = "1">Get the prediction result in <code>json</code> format</td>
</tr>
<tr>
<td rowspan = "1"><code>img</code></td>
<td rowspan = "1">Get the visualized image in <code>dict</code> format</td>
</tr>
</table>
## 4. Secondary Development
The current module does not support fine-tuning training and only supports inference integration. Concerning fine-tuning training for this module, there are plans to support it in the future.
## 5. FAQ