| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #     http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from __future__ import absolute_import | 
					
						
							|  |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | import sys | 
					
						
							|  |  |  | import json | 
					
						
							|  |  |  | from PIL import Image | 
					
						
							|  |  |  | import cv2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | __dir__ = os.path.dirname(os.path.abspath(__file__)) | 
					
						
							|  |  |  | sys.path.insert(0, __dir__) | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  | sys.path.insert(0, os.path.abspath(os.path.join(__dir__, ".."))) | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  | os.environ["FLAGS_allocator_strategy"] = "auto_growth" | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import paddle | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from ppocr.data import create_operators, transform | 
					
						
							|  |  |  | from ppocr.modeling.architectures import build_model | 
					
						
							|  |  |  | from ppocr.postprocess import build_post_process | 
					
						
							|  |  |  | from ppocr.utils.save_load import load_model | 
					
						
							|  |  |  | from ppocr.utils.utility import get_image_file_list | 
					
						
							|  |  |  | import tools.program as program | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(): | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     global_config = config["Global"] | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # build post process | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     post_process_class = build_post_process(config["PostProcess"], global_config) | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # sr transform | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     config["Architecture"]["Transform"]["infer_mode"] = True | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     model = build_model(config["Architecture"]) | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     load_model(config, model) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # create data ops | 
					
						
							|  |  |  |     transforms = [] | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     for op in config["Eval"]["dataset"]["transforms"]: | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |         op_name = list(op)[0] | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         if "Label" in op_name: | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |             continue | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         elif op_name in ["SRResize"]: | 
					
						
							|  |  |  |             op[op_name]["infer_mode"] = True | 
					
						
							|  |  |  |         elif op_name == "KeepKeys": | 
					
						
							|  |  |  |             op[op_name]["keep_keys"] = ["img_lr"] | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |         transforms.append(op) | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     global_config["infer_mode"] = True | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |     ops = create_operators(transforms, global_config) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     save_visual_path = config["Global"].get("save_visual", "infer_result/") | 
					
						
							| 
									
										
										
										
											2022-08-19 14:49:35 +08:00
										 |  |  |     if not os.path.exists(os.path.dirname(save_visual_path)): | 
					
						
							|  |  |  |         os.makedirs(os.path.dirname(save_visual_path)) | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     model.eval() | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |     for file in get_image_file_list(config["Global"]["infer_img"]): | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |         logger.info("infer_img: {}".format(file)) | 
					
						
							|  |  |  |         img = Image.open(file).convert("RGB") | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         data = {"image_lr": img} | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |         batch = transform(data, ops) | 
					
						
							|  |  |  |         images = np.expand_dims(batch[0], axis=0) | 
					
						
							|  |  |  |         images = paddle.to_tensor(images) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         preds = model(images) | 
					
						
							|  |  |  |         sr_img = preds["sr_img"][0] | 
					
						
							|  |  |  |         lr_img = preds["lr_img"][0] | 
					
						
							|  |  |  |         fm_sr = (sr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) | 
					
						
							|  |  |  |         fm_lr = (lr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) | 
					
						
							|  |  |  |         img_name_pure = os.path.split(file)[-1] | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  |         cv2.imwrite( | 
					
						
							|  |  |  |             "{}/sr_{}".format(save_visual_path, img_name_pure), fm_sr[:, :, ::-1] | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         logger.info( | 
					
						
							|  |  |  |             "The visualized image saved in infer_result/sr_{}".format(img_name_pure) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     logger.info("success!") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-21 21:46:20 +08:00
										 |  |  | if __name__ == "__main__": | 
					
						
							| 
									
										
										
										
											2022-08-12 10:49:54 +08:00
										 |  |  |     config, device, logger, vdl_writer = program.preprocess() | 
					
						
							|  |  |  |     main() |