| 
									
										
										
										
											2024-10-12 18:46:33 +08:00
										 |  |  | # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | # you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | # You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #     http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | # distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | # See the License for the specific language governing permissions and | 
					
						
							|  |  |  | # limitations under the License. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import paddle.distributed as dist | 
					
						
							|  |  |  | import math | 
					
						
							|  |  |  | import paddle | 
					
						
							|  |  |  | import paddle.nn as nn | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class _AllReduce(paddle.autograd.PyLayer): | 
					
						
							|  |  |  |     @staticmethod | 
					
						
							|  |  |  |     def forward(ctx, input): | 
					
						
							|  |  |  |         input_list = [paddle.zeros_like(input) for k in range(dist.get_world_size())] | 
					
						
							|  |  |  |         # Use allgather instead of allreduce since I don't trust in-place operations .. | 
					
						
							|  |  |  |         dist.all_gather(input_list, input, sync_op=True) | 
					
						
							|  |  |  |         inputs = paddle.stack(input_list, axis=0) | 
					
						
							|  |  |  |         return paddle.sum(inputs, axis=0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     @staticmethod | 
					
						
							|  |  |  |     def backward(ctx, grad_output): | 
					
						
							|  |  |  |         dist.all_reduce(grad_output, sync_op=True) | 
					
						
							|  |  |  |         return grad_output | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def differentiable_all_reduce(input): | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     Differentiable counterpart of `dist.all_reduce`. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     if ( | 
					
						
							|  |  |  |         not dist.is_available() | 
					
						
							|  |  |  |         or not dist.is_initialized() | 
					
						
							|  |  |  |         or dist.get_world_size() == 1 | 
					
						
							|  |  |  |     ): | 
					
						
							|  |  |  |         return input | 
					
						
							|  |  |  |     return _AllReduce.apply(input) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class NaiveSyncBatchNorm(nn.BatchNorm2D): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __init__(self, *args, stats_mode="", **kwargs): | 
					
						
							|  |  |  |         super().__init__(*args, **kwargs) | 
					
						
							|  |  |  |         assert stats_mode in ["", "N"] | 
					
						
							|  |  |  |         self._stats_mode = stats_mode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, input): | 
					
						
							|  |  |  |         if dist.get_world_size() == 1 or not self.training: | 
					
						
							|  |  |  |             return super().forward(input) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         B, C = input.shape[0], input.shape[1] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         mean = paddle.mean(input, axis=[0, 2, 3]) | 
					
						
							|  |  |  |         meansqr = paddle.mean(input * input, axis=[0, 2, 3]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self._stats_mode == "": | 
					
						
							|  |  |  |             assert ( | 
					
						
							|  |  |  |                 B > 0 | 
					
						
							|  |  |  |             ), 'SyncBatchNorm(stats_mode="") does not support zero batch size.' | 
					
						
							|  |  |  |             vec = paddle.concat([mean, meansqr], axis=0) | 
					
						
							|  |  |  |             vec = differentiable_all_reduce(vec) * (1.0 / dist.get_world_size()) | 
					
						
							|  |  |  |             mean, meansqr = paddle.split(vec, [C, C]) | 
					
						
							|  |  |  |             momentum = ( | 
					
						
							|  |  |  |                 1 - self._momentum | 
					
						
							| 
									
										
										
										
											2025-03-04 14:20:13 +08:00
										 |  |  |             )  # NOTE: paddle has reverse momentum definition | 
					
						
							| 
									
										
										
										
											2024-10-12 18:46:33 +08:00
										 |  |  |         else: | 
					
						
							|  |  |  |             if B == 0: | 
					
						
							|  |  |  |                 vec = paddle.zeros([2 * C + 1], dtype=mean.dtype) | 
					
						
							|  |  |  |                 vec = vec + input.sum()  # make sure there is gradient w.r.t input | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 vec = paddle.concat( | 
					
						
							|  |  |  |                     [ | 
					
						
							|  |  |  |                         mean, | 
					
						
							|  |  |  |                         meansqr, | 
					
						
							|  |  |  |                         paddle.ones([1], dtype=mean.dtype), | 
					
						
							|  |  |  |                     ], | 
					
						
							|  |  |  |                     axis=0, | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             vec = differentiable_all_reduce(vec * B) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             total_batch = vec[-1].detach() | 
					
						
							|  |  |  |             momentum = total_batch.clip(max=1) * ( | 
					
						
							|  |  |  |                 1 - self._momentum | 
					
						
							|  |  |  |             )  # no update if total_batch is 0 | 
					
						
							|  |  |  |             mean, meansqr, _ = paddle.split( | 
					
						
							|  |  |  |                 vec / total_batch.clip(min=1), [C, C, int(vec.shape[0] - 2 * C)] | 
					
						
							|  |  |  |             )  # avoid div-by-zero | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         var = meansqr - mean * mean | 
					
						
							|  |  |  |         invstd = paddle.rsqrt(var + self._epsilon) | 
					
						
							|  |  |  |         scale = self.weight * invstd | 
					
						
							|  |  |  |         bias = self.bias - mean * scale | 
					
						
							|  |  |  |         scale = scale.reshape([1, -1, 1, 1]) | 
					
						
							|  |  |  |         bias = bias.reshape([1, -1, 1, 1]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tmp_mean = self._mean + momentum * (mean.detach() - self._mean) | 
					
						
							|  |  |  |         self._mean.set_value(tmp_mean) | 
					
						
							|  |  |  |         tmp_variance = self._variance + (momentum * (var.detach() - self._variance)) | 
					
						
							|  |  |  |         self._variance.set_value(tmp_variance) | 
					
						
							|  |  |  |         ret = input * scale + bias | 
					
						
							|  |  |  |         return ret | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def convert_syncbn(model): | 
					
						
							|  |  |  |     for n, m in model.named_children(): | 
					
						
							|  |  |  |         if isinstance(m, nn.layer.norm._BatchNormBase): | 
					
						
							|  |  |  |             syncbn = NaiveSyncBatchNorm( | 
					
						
							|  |  |  |                 m._num_features, m._momentum, m._epsilon, m._weight_attr, m._bias_attr | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             setattr(model, n, syncbn) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             convert_syncbn(m) |