2021-11-04 18:23:23 +08:00
|
|
|
"""
|
|
|
|
This code is refer from:
|
|
|
|
https://github.com/whai362/PSENet/blob/python3/models/loss/iou.py
|
|
|
|
"""
|
2021-07-27 15:33:05 +08:00
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
EPS = 1e-6
|
|
|
|
|
2021-11-04 18:23:23 +08:00
|
|
|
|
2021-07-27 15:33:05 +08:00
|
|
|
def iou_single(a, b, mask, n_class):
|
|
|
|
valid = mask == 1
|
|
|
|
a = a.masked_select(valid)
|
|
|
|
b = b.masked_select(valid)
|
|
|
|
miou = []
|
|
|
|
for i in range(n_class):
|
2021-11-04 18:23:23 +08:00
|
|
|
if a.shape == [0] and a.shape == b.shape:
|
2021-07-27 15:33:05 +08:00
|
|
|
inter = paddle.to_tensor(0.0)
|
|
|
|
union = paddle.to_tensor(0.0)
|
|
|
|
else:
|
|
|
|
inter = ((a == i).logical_and(b == i)).astype('float32')
|
|
|
|
union = ((a == i).logical_or(b == i)).astype('float32')
|
|
|
|
miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS))
|
|
|
|
miou = sum(miou) / len(miou)
|
|
|
|
return miou
|
|
|
|
|
2021-11-04 18:23:23 +08:00
|
|
|
|
2021-07-27 15:33:05 +08:00
|
|
|
def iou(a, b, mask, n_class=2, reduce=True):
|
|
|
|
batch_size = a.shape[0]
|
|
|
|
|
|
|
|
a = a.reshape([batch_size, -1])
|
|
|
|
b = b.reshape([batch_size, -1])
|
|
|
|
mask = mask.reshape([batch_size, -1])
|
|
|
|
|
2021-11-04 18:23:23 +08:00
|
|
|
iou = paddle.zeros((batch_size, ), dtype='float32')
|
2021-07-27 15:33:05 +08:00
|
|
|
for i in range(batch_size):
|
|
|
|
iou[i] = iou_single(a[i], b[i], mask[i], n_class)
|
|
|
|
|
|
|
|
if reduce:
|
|
|
|
iou = paddle.mean(iou)
|
2021-11-04 18:23:23 +08:00
|
|
|
return iou
|