2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								# 关键信息抽取算法-VI-LayoutXLM
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  [1. 算法简介 ](#1-算法简介 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  [2. 环境配置 ](#2-环境配置 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  [3. 模型训练、评估、预测 ](#3-模型训练评估预测 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  [4. 推理部署 ](#4-推理部署 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  -  [4.1 Python推理 ](#41-python推理 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  -  [4.2 C++推理部署 ](#42-c推理部署 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  -  [4.3 Serving服务化部署 ](#43-serving服务化部署 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  -  [4.4 更多推理部署 ](#44-更多推理部署 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  [5. FAQ ](#5-faq )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  [引用 ](#引用 )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "1" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								## 1. 算法简介
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								VI-LayoutXLM基于LayoutXLM进行改进,  在下游任务训练过程中,  去除视觉骨干网络模块,  最终精度基本无损的情况下,  模型推理速度进一步提升。
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								在XFUND_zh数据集上,  算法复现效果如下: 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								|模型|骨干网络|任务|配置文件|hmean|下载链接|
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								| --- | --- |---| --- | --- | --- |
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								|VI-LayoutXLM |VI-LayoutXLM-base | SER |[ser_vi_layoutxlm_xfund_zh_udml.yml ](../../configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml )|93.19%|[训练模型 ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar )/[推理模型 ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2022-09-20 22:13:27 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								|VI-LayoutXLM |VI-LayoutXLM-base |RE | [re_vi_layoutxlm_xfund_zh_udml.yml ](../../configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh_udml.yml )|83.92%|[训练模型 ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar )/[推理模型 ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tar )|
							 
						 
					
						
							
								
									
										
										
										
											2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "2" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								## 2. 环境配置
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								请先参考[《运行环境准备》 ](./environment.md )配置PaddleOCR运行环境,  参考[《项目克隆》 ](./clone.md )克隆项目代码。
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "3" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								## 3. 模型训练、评估、预测
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								请参考[关键信息抽取教程 ](./kie.md )。PaddleOCR对代码进行了模块化,  训练不同的关键信息抽取模型只需要**更换配置文件**即可。
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "4" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								## 4. 推理部署
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "4-1" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								### 4.1 Python推理
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-09-21 17:56:29 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  SER
							 
						 
					
						
							
								
									
										
										
										
											2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								首先将训练得到的模型转换成inference model。以VI-LayoutXLM模型在XFUND_zh数据集上训练的模型为例(  [模型下载地址 ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar )),可以使用下面的命令进行转换。
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								``` bash
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								tar -xf ser_vi_layoutxlm_xfund_pretrained.tar
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								python3 tools/export_model.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./ser_vi_layoutxlm_xfund_pretrained/best_accuracy Global.save_inference_dir=./inference/ser_vi_layoutxlm_infer
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								VI-LayoutXLM模型基于SER任务进行推理,  可以执行如下命令: 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```bash
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								cd ppstructure
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								python3 kie/predict_kie_token_ser.py \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --kie_algorithm=LayoutXLM \
							 
						 
					
						
							
								
									
										
										
										
											2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --ser_model_dir=../inference/ser_vi_layoutxlm_infer \
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --image_dir=./docs/kie/input/zh_val_42.jpg \
							 
						 
					
						
							
								
									
										
										
										
											2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --vis_font_path=../doc/fonts/simfang.ttf \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --ocr_order_method="tb-yx"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								SER可视化结果默认保存到`./output` 文件夹里面,结果示例如下:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< div  align = "center" > 
							 
						 
					
						
							
								
									
										
										
										
											2022-08-21 10:55:49 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								    < img  src = "../../ppstructure/docs/kie/result_ser/zh_val_42_ser.jpg"  width = "800" > 
							 
						 
					
						
							
								
									
										
										
										
											2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< / div > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2022-09-21 17:56:29 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								-  RE
							 
						 
					
						
							
								
									
										
										
										
											2022-09-20 22:13:27 +08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								首先将训练得到的模型转换成inference model。以VI-LayoutXLM模型在XFUND_zh数据集上训练的模型为例(  [模型下载地址 ](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar )),可以使用下面的命令进行转换。
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								``` bash
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								tar -xf re_vi_layoutxlm_xfund_pretrained.tar
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								python3 tools/export_model.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./re_vi_layoutxlm_xfund_pretrained/best_accuracy Global.save_inference_dir=./inference/re_vi_layoutxlm_infer
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								VI-LayoutXLM模型基于RE任务进行推理,  可以执行如下命令: 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```bash
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								cd ppstructure
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								python3 kie/predict_kie_token_ser_re.py \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --kie_algorithm=LayoutXLM \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --re_model_dir=../inference/re_vi_layoutxlm_infer \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --ser_model_dir=../inference/ser_vi_layoutxlm_infer \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --use_visual_backbone=False \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --image_dir=./docs/kie/input/zh_val_42.jpg \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --vis_font_path=../doc/fonts/simfang.ttf \
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  --ocr_order_method="tb-yx"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								RE可视化结果默认保存到`./output` 文件夹里面,结果示例如下:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< div  align = "center" > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    < img  src = "../../ppstructure/docs/kie/result_re/zh_val_42_re.jpg"  width = "800" > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< / div > 
							 
						 
					
						
							
								
									
										
										
										
											2022-08-15 11:39:11 +08:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "4-2" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								### 4.2 C++推理部署
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								暂不支持
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "4-3" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								### 4.3 Serving服务化部署
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								暂不支持
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "4-4" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								### 4.4 更多推理部署
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								暂不支持
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								< a  name = "5" > < / a > 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								## 5. FAQ
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								## 引用
 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```bibtex
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								@article {DBLP:journals/corr/abs-2104-08836,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  author    = {Yiheng Xu and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Tengchao Lv and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Lei Cui and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Guoxin Wang and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Yijuan Lu and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Dinei Flor{\^{e}}ncio and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Cha Zhang and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Furu Wei},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  title     = {LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Document Understanding},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  journal   = {CoRR},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  volume    = {abs/2104.08836},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  year      = {2021},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  url       = {https://arxiv.org/abs/2104.08836},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  eprinttype = {arXiv},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  eprint    = {2104.08836},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  timestamp = {Thu, 14 Oct 2021 09:17:23 +0200},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-08836.bib},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  bibsource = {dblp computer science bibliography, https://dblp.org}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								@article {DBLP:journals/corr/abs-1912-13318,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  author    = {Yiheng Xu and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Minghao Li and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Lei Cui and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Shaohan Huang and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Furu Wei and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Ming Zhou},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  title     = {LayoutLM: Pre-training of Text and Layout for Document Image Understanding},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  journal   = {CoRR},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  volume    = {abs/1912.13318},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  year      = {2019},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  url       = {http://arxiv.org/abs/1912.13318},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  eprinttype = {arXiv},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  eprint    = {1912.13318},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  timestamp = {Mon, 01 Jun 2020 16:20:46 +0200},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  biburl    = {https://dblp.org/rec/journals/corr/abs-1912-13318.bib},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  bibsource = {dblp computer science bibliography, https://dblp.org}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								@article {DBLP:journals/corr/abs-2012-14740,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  author    = {Yang Xu and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Yiheng Xu and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Tengchao Lv and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Lei Cui and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Furu Wei and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Guoxin Wang and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Yijuan Lu and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Dinei A. F. Flor{\^{e}}ncio and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Cha Zhang and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Wanxiang Che and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Min Zhang and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								               Lidong Zhou},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  title     = {LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  journal   = {CoRR},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  volume    = {abs/2012.14740},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  year      = {2020},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  url       = {https://arxiv.org/abs/2012.14740},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  eprinttype = {arXiv},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  eprint    = {2012.14740},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  timestamp = {Tue, 27 Jul 2021 09:53:52 +0200},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  biburl    = {https://dblp.org/rec/journals/corr/abs-2012-14740.bib},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  bibsource = {dblp computer science bibliography, https://dblp.org}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								```