mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-11-01 18:29:18 +00:00
add indicator explain
This commit is contained in:
parent
b63088b9a5
commit
015cb7f08e
@ -30,12 +30,16 @@ The table recognition flow chart is as follows
|
||||
## 2. Performance
|
||||
We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the performance is as follows:
|
||||
|
||||
|Method|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed|
|
||||
| --- | --- | --- | ---|
|
||||
| EDD<sup>[2]</sup> |x| 88.3 |x|
|
||||
| TableRec-RARE(ours) |73.8%| 93.32 |1180ms|
|
||||
| SLANet(ours) | 76.2%| 94.98 |590ms|
|
||||
|
||||
|Method|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
|
||||
| --- | --- | --- |
|
||||
| EDD<sup>[2]</sup> |x| 88.3 |
|
||||
| TableRec-RARE(ours) |73.8%| 93.32 |
|
||||
| SLANet(ours) | 76.2%| 94.98 |SLANet |
|
||||
The performance indicators are explained as follows:
|
||||
- Acc: The accuracy of the table structure in each image, a wrong token is considered an error.
|
||||
- TEDS: The accuracy of the model's restoration of table information. This indicator evaluates not only the table structure, but also the text content in the table.
|
||||
- Speed: The inference speed of a single image when the model runs on the CPU machine and MKL is enabled.
|
||||
|
||||
## 3. Result
|
||||
|
||||
|
||||
@ -36,11 +36,16 @@
|
||||
我们在 PubTabNet<sup>[1]</sup> 评估数据集上对算法进行了评估,性能如下
|
||||
|
||||
|
||||
|算法|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
|
||||
| --- | --- | --- |
|
||||
| EDD<sup>[2]</sup> |x| 88.3 |
|
||||
| TableRec-RARE(ours) |73.8%| 93.32 |
|
||||
| SLANet(ours) | 76.2%| 94.98 |
|
||||
|算法|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed|
|
||||
| --- | --- | --- | ---|
|
||||
| EDD<sup>[2]</sup> |x| 88.3 |x|
|
||||
| TableRec-RARE(ours) |73.8%| 93.32 |1180ms|
|
||||
| SLANet(ours) | 76.2%| 94.98 |590ms|
|
||||
|
||||
性能指标解释如下:
|
||||
- Acc: 模型对每张图像里表格结构的识别准确率,错一个token就算错误。
|
||||
- TEDS: 模型对表格信息还原的准确度,此指标评价内容不仅包含表格结构,还包含表格内的文字内容。
|
||||
- Speed: 模型在CPU机器上,开启MKL的情况下,单张图片的推理速度。
|
||||
|
||||
## 3. 效果演示
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user