mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-08-18 13:37:17 +00:00
del table backbone (#4802)
This commit is contained in:
parent
0271adae76
commit
0825841f06
@ -16,7 +16,7 @@ __all__ = ["build_backbone"]
|
|||||||
|
|
||||||
|
|
||||||
def build_backbone(config, model_type):
|
def build_backbone(config, model_type):
|
||||||
if model_type == "det":
|
if model_type == "det" or model_type == "table":
|
||||||
from .det_mobilenet_v3 import MobileNetV3
|
from .det_mobilenet_v3 import MobileNetV3
|
||||||
from .det_resnet_vd import ResNet
|
from .det_resnet_vd import ResNet
|
||||||
from .det_resnet_vd_sast import ResNet_SAST
|
from .det_resnet_vd_sast import ResNet_SAST
|
||||||
@ -36,10 +36,6 @@ def build_backbone(config, model_type):
|
|||||||
elif model_type == "e2e":
|
elif model_type == "e2e":
|
||||||
from .e2e_resnet_vd_pg import ResNet
|
from .e2e_resnet_vd_pg import ResNet
|
||||||
support_dict = ["ResNet"]
|
support_dict = ["ResNet"]
|
||||||
elif model_type == "table":
|
|
||||||
from .table_resnet_vd import ResNet
|
|
||||||
from .table_mobilenet_v3 import MobileNetV3
|
|
||||||
support_dict = ["ResNet", "MobileNetV3"]
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
@ -1,287 +0,0 @@
|
|||||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from __future__ import division
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import paddle
|
|
||||||
from paddle import nn
|
|
||||||
import paddle.nn.functional as F
|
|
||||||
from paddle import ParamAttr
|
|
||||||
|
|
||||||
__all__ = ['MobileNetV3']
|
|
||||||
|
|
||||||
|
|
||||||
def make_divisible(v, divisor=8, min_value=None):
|
|
||||||
if min_value is None:
|
|
||||||
min_value = divisor
|
|
||||||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
||||||
if new_v < 0.9 * v:
|
|
||||||
new_v += divisor
|
|
||||||
return new_v
|
|
||||||
|
|
||||||
|
|
||||||
class MobileNetV3(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels=3,
|
|
||||||
model_name='large',
|
|
||||||
scale=0.5,
|
|
||||||
disable_se=False,
|
|
||||||
**kwargs):
|
|
||||||
"""
|
|
||||||
the MobilenetV3 backbone network for detection module.
|
|
||||||
Args:
|
|
||||||
params(dict): the super parameters for build network
|
|
||||||
"""
|
|
||||||
super(MobileNetV3, self).__init__()
|
|
||||||
|
|
||||||
self.disable_se = disable_se
|
|
||||||
|
|
||||||
if model_name == "large":
|
|
||||||
cfg = [
|
|
||||||
# k, exp, c, se, nl, s,
|
|
||||||
[3, 16, 16, False, 'relu', 1],
|
|
||||||
[3, 64, 24, False, 'relu', 2],
|
|
||||||
[3, 72, 24, False, 'relu', 1],
|
|
||||||
[5, 72, 40, True, 'relu', 2],
|
|
||||||
[5, 120, 40, True, 'relu', 1],
|
|
||||||
[5, 120, 40, True, 'relu', 1],
|
|
||||||
[3, 240, 80, False, 'hardswish', 2],
|
|
||||||
[3, 200, 80, False, 'hardswish', 1],
|
|
||||||
[3, 184, 80, False, 'hardswish', 1],
|
|
||||||
[3, 184, 80, False, 'hardswish', 1],
|
|
||||||
[3, 480, 112, True, 'hardswish', 1],
|
|
||||||
[3, 672, 112, True, 'hardswish', 1],
|
|
||||||
[5, 672, 160, True, 'hardswish', 2],
|
|
||||||
[5, 960, 160, True, 'hardswish', 1],
|
|
||||||
[5, 960, 160, True, 'hardswish', 1],
|
|
||||||
]
|
|
||||||
cls_ch_squeeze = 960
|
|
||||||
elif model_name == "small":
|
|
||||||
cfg = [
|
|
||||||
# k, exp, c, se, nl, s,
|
|
||||||
[3, 16, 16, True, 'relu', 2],
|
|
||||||
[3, 72, 24, False, 'relu', 2],
|
|
||||||
[3, 88, 24, False, 'relu', 1],
|
|
||||||
[5, 96, 40, True, 'hardswish', 2],
|
|
||||||
[5, 240, 40, True, 'hardswish', 1],
|
|
||||||
[5, 240, 40, True, 'hardswish', 1],
|
|
||||||
[5, 120, 48, True, 'hardswish', 1],
|
|
||||||
[5, 144, 48, True, 'hardswish', 1],
|
|
||||||
[5, 288, 96, True, 'hardswish', 2],
|
|
||||||
[5, 576, 96, True, 'hardswish', 1],
|
|
||||||
[5, 576, 96, True, 'hardswish', 1],
|
|
||||||
]
|
|
||||||
cls_ch_squeeze = 576
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("mode[" + model_name +
|
|
||||||
"_model] is not implemented!")
|
|
||||||
|
|
||||||
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
|
|
||||||
assert scale in supported_scale, \
|
|
||||||
"supported scale are {} but input scale is {}".format(supported_scale, scale)
|
|
||||||
inplanes = 16
|
|
||||||
# conv1
|
|
||||||
self.conv = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=make_divisible(inplanes * scale),
|
|
||||||
kernel_size=3,
|
|
||||||
stride=2,
|
|
||||||
padding=1,
|
|
||||||
groups=1,
|
|
||||||
if_act=True,
|
|
||||||
act='hardswish',
|
|
||||||
name='conv1')
|
|
||||||
|
|
||||||
self.stages = []
|
|
||||||
self.out_channels = []
|
|
||||||
block_list = []
|
|
||||||
i = 0
|
|
||||||
inplanes = make_divisible(inplanes * scale)
|
|
||||||
for (k, exp, c, se, nl, s) in cfg:
|
|
||||||
se = se and not self.disable_se
|
|
||||||
start_idx = 2 if model_name == 'large' else 0
|
|
||||||
if s == 2 and i > start_idx:
|
|
||||||
self.out_channels.append(inplanes)
|
|
||||||
self.stages.append(nn.Sequential(*block_list))
|
|
||||||
block_list = []
|
|
||||||
block_list.append(
|
|
||||||
ResidualUnit(
|
|
||||||
in_channels=inplanes,
|
|
||||||
mid_channels=make_divisible(scale * exp),
|
|
||||||
out_channels=make_divisible(scale * c),
|
|
||||||
kernel_size=k,
|
|
||||||
stride=s,
|
|
||||||
use_se=se,
|
|
||||||
act=nl,
|
|
||||||
name="conv" + str(i + 2)))
|
|
||||||
inplanes = make_divisible(scale * c)
|
|
||||||
i += 1
|
|
||||||
block_list.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=inplanes,
|
|
||||||
out_channels=make_divisible(scale * cls_ch_squeeze),
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
groups=1,
|
|
||||||
if_act=True,
|
|
||||||
act='hardswish',
|
|
||||||
name='conv_last'))
|
|
||||||
self.stages.append(nn.Sequential(*block_list))
|
|
||||||
self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
|
|
||||||
for i, stage in enumerate(self.stages):
|
|
||||||
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.conv(x)
|
|
||||||
out_list = []
|
|
||||||
for stage in self.stages:
|
|
||||||
x = stage(x)
|
|
||||||
out_list.append(x)
|
|
||||||
return out_list
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBNLayer(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride,
|
|
||||||
padding,
|
|
||||||
groups=1,
|
|
||||||
if_act=True,
|
|
||||||
act=None,
|
|
||||||
name=None):
|
|
||||||
super(ConvBNLayer, self).__init__()
|
|
||||||
self.if_act = if_act
|
|
||||||
self.act = act
|
|
||||||
self.conv = nn.Conv2D(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=stride,
|
|
||||||
padding=padding,
|
|
||||||
groups=groups,
|
|
||||||
weight_attr=ParamAttr(name=name + '_weights'),
|
|
||||||
bias_attr=False)
|
|
||||||
|
|
||||||
self.bn = nn.BatchNorm(
|
|
||||||
num_channels=out_channels,
|
|
||||||
act=None,
|
|
||||||
param_attr=ParamAttr(name=name + "_bn_scale"),
|
|
||||||
bias_attr=ParamAttr(name=name + "_bn_offset"),
|
|
||||||
moving_mean_name=name + "_bn_mean",
|
|
||||||
moving_variance_name=name + "_bn_variance")
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.conv(x)
|
|
||||||
x = self.bn(x)
|
|
||||||
if self.if_act:
|
|
||||||
if self.act == "relu":
|
|
||||||
x = F.relu(x)
|
|
||||||
elif self.act == "hardswish":
|
|
||||||
x = F.hardswish(x)
|
|
||||||
else:
|
|
||||||
print("The activation function({}) is selected incorrectly.".
|
|
||||||
format(self.act))
|
|
||||||
exit()
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualUnit(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels,
|
|
||||||
mid_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride,
|
|
||||||
use_se,
|
|
||||||
act=None,
|
|
||||||
name=''):
|
|
||||||
super(ResidualUnit, self).__init__()
|
|
||||||
self.if_shortcut = stride == 1 and in_channels == out_channels
|
|
||||||
self.if_se = use_se
|
|
||||||
|
|
||||||
self.expand_conv = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=mid_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
if_act=True,
|
|
||||||
act=act,
|
|
||||||
name=name + "_expand")
|
|
||||||
self.bottleneck_conv = ConvBNLayer(
|
|
||||||
in_channels=mid_channels,
|
|
||||||
out_channels=mid_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=stride,
|
|
||||||
padding=int((kernel_size - 1) // 2),
|
|
||||||
groups=mid_channels,
|
|
||||||
if_act=True,
|
|
||||||
act=act,
|
|
||||||
name=name + "_depthwise")
|
|
||||||
if self.if_se:
|
|
||||||
self.mid_se = SEModule(mid_channels, name=name + "_se")
|
|
||||||
self.linear_conv = ConvBNLayer(
|
|
||||||
in_channels=mid_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
if_act=False,
|
|
||||||
act=None,
|
|
||||||
name=name + "_linear")
|
|
||||||
|
|
||||||
def forward(self, inputs):
|
|
||||||
x = self.expand_conv(inputs)
|
|
||||||
x = self.bottleneck_conv(x)
|
|
||||||
if self.if_se:
|
|
||||||
x = self.mid_se(x)
|
|
||||||
x = self.linear_conv(x)
|
|
||||||
if self.if_shortcut:
|
|
||||||
x = paddle.add(inputs, x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class SEModule(nn.Layer):
|
|
||||||
def __init__(self, in_channels, reduction=4, name=""):
|
|
||||||
super(SEModule, self).__init__()
|
|
||||||
self.avg_pool = nn.AdaptiveAvgPool2D(1)
|
|
||||||
self.conv1 = nn.Conv2D(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=in_channels // reduction,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
weight_attr=ParamAttr(name=name + "_1_weights"),
|
|
||||||
bias_attr=ParamAttr(name=name + "_1_offset"))
|
|
||||||
self.conv2 = nn.Conv2D(
|
|
||||||
in_channels=in_channels // reduction,
|
|
||||||
out_channels=in_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
weight_attr=ParamAttr(name + "_2_weights"),
|
|
||||||
bias_attr=ParamAttr(name=name + "_2_offset"))
|
|
||||||
|
|
||||||
def forward(self, inputs):
|
|
||||||
outputs = self.avg_pool(inputs)
|
|
||||||
outputs = self.conv1(outputs)
|
|
||||||
outputs = F.relu(outputs)
|
|
||||||
outputs = self.conv2(outputs)
|
|
||||||
outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
|
|
||||||
return inputs * outputs
|
|
@ -1,280 +0,0 @@
|
|||||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from __future__ import division
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import paddle
|
|
||||||
from paddle import ParamAttr
|
|
||||||
import paddle.nn as nn
|
|
||||||
import paddle.nn.functional as F
|
|
||||||
|
|
||||||
__all__ = ["ResNet"]
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBNLayer(nn.Layer):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride=1,
|
|
||||||
groups=1,
|
|
||||||
is_vd_mode=False,
|
|
||||||
act=None,
|
|
||||||
name=None, ):
|
|
||||||
super(ConvBNLayer, self).__init__()
|
|
||||||
|
|
||||||
self.is_vd_mode = is_vd_mode
|
|
||||||
self._pool2d_avg = nn.AvgPool2D(
|
|
||||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
||||||
self._conv = nn.Conv2D(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=stride,
|
|
||||||
padding=(kernel_size - 1) // 2,
|
|
||||||
groups=groups,
|
|
||||||
weight_attr=ParamAttr(name=name + "_weights"),
|
|
||||||
bias_attr=False)
|
|
||||||
if name == "conv1":
|
|
||||||
bn_name = "bn_" + name
|
|
||||||
else:
|
|
||||||
bn_name = "bn" + name[3:]
|
|
||||||
self._batch_norm = nn.BatchNorm(
|
|
||||||
out_channels,
|
|
||||||
act=act,
|
|
||||||
param_attr=ParamAttr(name=bn_name + '_scale'),
|
|
||||||
bias_attr=ParamAttr(bn_name + '_offset'),
|
|
||||||
moving_mean_name=bn_name + '_mean',
|
|
||||||
moving_variance_name=bn_name + '_variance')
|
|
||||||
|
|
||||||
def forward(self, inputs):
|
|
||||||
if self.is_vd_mode:
|
|
||||||
inputs = self._pool2d_avg(inputs)
|
|
||||||
y = self._conv(inputs)
|
|
||||||
y = self._batch_norm(y)
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
class BottleneckBlock(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
stride,
|
|
||||||
shortcut=True,
|
|
||||||
if_first=False,
|
|
||||||
name=None):
|
|
||||||
super(BottleneckBlock, self).__init__()
|
|
||||||
|
|
||||||
self.conv0 = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
act='relu',
|
|
||||||
name=name + "_branch2a")
|
|
||||||
self.conv1 = ConvBNLayer(
|
|
||||||
in_channels=out_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=stride,
|
|
||||||
act='relu',
|
|
||||||
name=name + "_branch2b")
|
|
||||||
self.conv2 = ConvBNLayer(
|
|
||||||
in_channels=out_channels,
|
|
||||||
out_channels=out_channels * 4,
|
|
||||||
kernel_size=1,
|
|
||||||
act=None,
|
|
||||||
name=name + "_branch2c")
|
|
||||||
|
|
||||||
if not shortcut:
|
|
||||||
self.short = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels * 4,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
is_vd_mode=False if if_first else True,
|
|
||||||
name=name + "_branch1")
|
|
||||||
|
|
||||||
self.shortcut = shortcut
|
|
||||||
|
|
||||||
def forward(self, inputs):
|
|
||||||
y = self.conv0(inputs)
|
|
||||||
conv1 = self.conv1(y)
|
|
||||||
conv2 = self.conv2(conv1)
|
|
||||||
|
|
||||||
if self.shortcut:
|
|
||||||
short = inputs
|
|
||||||
else:
|
|
||||||
short = self.short(inputs)
|
|
||||||
y = paddle.add(x=short, y=conv2)
|
|
||||||
y = F.relu(y)
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
class BasicBlock(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
stride,
|
|
||||||
shortcut=True,
|
|
||||||
if_first=False,
|
|
||||||
name=None):
|
|
||||||
super(BasicBlock, self).__init__()
|
|
||||||
self.stride = stride
|
|
||||||
self.conv0 = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=stride,
|
|
||||||
act='relu',
|
|
||||||
name=name + "_branch2a")
|
|
||||||
self.conv1 = ConvBNLayer(
|
|
||||||
in_channels=out_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
act=None,
|
|
||||||
name=name + "_branch2b")
|
|
||||||
|
|
||||||
if not shortcut:
|
|
||||||
self.short = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
is_vd_mode=False if if_first else True,
|
|
||||||
name=name + "_branch1")
|
|
||||||
|
|
||||||
self.shortcut = shortcut
|
|
||||||
|
|
||||||
def forward(self, inputs):
|
|
||||||
y = self.conv0(inputs)
|
|
||||||
conv1 = self.conv1(y)
|
|
||||||
|
|
||||||
if self.shortcut:
|
|
||||||
short = inputs
|
|
||||||
else:
|
|
||||||
short = self.short(inputs)
|
|
||||||
y = paddle.add(x=short, y=conv1)
|
|
||||||
y = F.relu(y)
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
class ResNet(nn.Layer):
|
|
||||||
def __init__(self, in_channels=3, layers=50, **kwargs):
|
|
||||||
super(ResNet, self).__init__()
|
|
||||||
|
|
||||||
self.layers = layers
|
|
||||||
supported_layers = [18, 34, 50, 101, 152, 200]
|
|
||||||
assert layers in supported_layers, \
|
|
||||||
"supported layers are {} but input layer is {}".format(
|
|
||||||
supported_layers, layers)
|
|
||||||
|
|
||||||
if layers == 18:
|
|
||||||
depth = [2, 2, 2, 2]
|
|
||||||
elif layers == 34 or layers == 50:
|
|
||||||
depth = [3, 4, 6, 3]
|
|
||||||
elif layers == 101:
|
|
||||||
depth = [3, 4, 23, 3]
|
|
||||||
elif layers == 152:
|
|
||||||
depth = [3, 8, 36, 3]
|
|
||||||
elif layers == 200:
|
|
||||||
depth = [3, 12, 48, 3]
|
|
||||||
num_channels = [64, 256, 512,
|
|
||||||
1024] if layers >= 50 else [64, 64, 128, 256]
|
|
||||||
num_filters = [64, 128, 256, 512]
|
|
||||||
|
|
||||||
self.conv1_1 = ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=32,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=2,
|
|
||||||
act='relu',
|
|
||||||
name="conv1_1")
|
|
||||||
self.conv1_2 = ConvBNLayer(
|
|
||||||
in_channels=32,
|
|
||||||
out_channels=32,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name="conv1_2")
|
|
||||||
self.conv1_3 = ConvBNLayer(
|
|
||||||
in_channels=32,
|
|
||||||
out_channels=64,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name="conv1_3")
|
|
||||||
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
|
||||||
|
|
||||||
self.stages = []
|
|
||||||
self.out_channels = []
|
|
||||||
if layers >= 50:
|
|
||||||
for block in range(len(depth)):
|
|
||||||
block_list = []
|
|
||||||
shortcut = False
|
|
||||||
for i in range(depth[block]):
|
|
||||||
if layers in [101, 152] and block == 2:
|
|
||||||
if i == 0:
|
|
||||||
conv_name = "res" + str(block + 2) + "a"
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block + 2) + "b" + str(i)
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
|
||||||
bottleneck_block = self.add_sublayer(
|
|
||||||
'bb_%d_%d' % (block, i),
|
|
||||||
BottleneckBlock(
|
|
||||||
in_channels=num_channels[block]
|
|
||||||
if i == 0 else num_filters[block] * 4,
|
|
||||||
out_channels=num_filters[block],
|
|
||||||
stride=2 if i == 0 and block != 0 else 1,
|
|
||||||
shortcut=shortcut,
|
|
||||||
if_first=block == i == 0,
|
|
||||||
name=conv_name))
|
|
||||||
shortcut = True
|
|
||||||
block_list.append(bottleneck_block)
|
|
||||||
self.out_channels.append(num_filters[block] * 4)
|
|
||||||
self.stages.append(nn.Sequential(*block_list))
|
|
||||||
else:
|
|
||||||
for block in range(len(depth)):
|
|
||||||
block_list = []
|
|
||||||
shortcut = False
|
|
||||||
for i in range(depth[block]):
|
|
||||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
|
||||||
basic_block = self.add_sublayer(
|
|
||||||
'bb_%d_%d' % (block, i),
|
|
||||||
BasicBlock(
|
|
||||||
in_channels=num_channels[block]
|
|
||||||
if i == 0 else num_filters[block],
|
|
||||||
out_channels=num_filters[block],
|
|
||||||
stride=2 if i == 0 and block != 0 else 1,
|
|
||||||
shortcut=shortcut,
|
|
||||||
if_first=block == i == 0,
|
|
||||||
name=conv_name))
|
|
||||||
shortcut = True
|
|
||||||
block_list.append(basic_block)
|
|
||||||
self.out_channels.append(num_filters[block])
|
|
||||||
self.stages.append(nn.Sequential(*block_list))
|
|
||||||
|
|
||||||
def forward(self, inputs):
|
|
||||||
y = self.conv1_1(inputs)
|
|
||||||
y = self.conv1_2(y)
|
|
||||||
y = self.conv1_3(y)
|
|
||||||
y = self.pool2d_max(y)
|
|
||||||
out = []
|
|
||||||
for block in self.stages:
|
|
||||||
y = block(y)
|
|
||||||
out.append(y)
|
|
||||||
return out
|
|
Loading…
x
Reference in New Issue
Block a user