mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	Merge branch 'dygraph' into pgnet-v1
This commit is contained in:
		
						commit
						1bbc3f6872
					
				@ -28,7 +28,9 @@ PaddleOCR开源的文本检测算法列表:
 | 
			
		||||
| --- | --- | --- | --- | --- | --- |
 | 
			
		||||
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
 | 
			
		||||
 | 
			
		||||
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
 | 
			
		||||
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
 | 
			
		||||
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
 | 
			
		||||
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
 | 
			
		||||
 | 
			
		||||
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -31,7 +31,9 @@ On Total-Text dataset, the text detection result is as follows:
 | 
			
		||||
| --- | --- | --- | --- | --- | --- |
 | 
			
		||||
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
 | 
			
		||||
 | 
			
		||||
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
 | 
			
		||||
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from:
 | 
			
		||||
* [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
 | 
			
		||||
* [Google Drive](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
 | 
			
		||||
 | 
			
		||||
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										11
									
								
								paddleocr.py
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								paddleocr.py
									
									
									
									
									
								
							@ -236,7 +236,9 @@ class PaddleOCR(predict_system.TextSystem):
 | 
			
		||||
        assert lang in model_urls[
 | 
			
		||||
            'rec'], 'param lang must in {}, but got {}'.format(
 | 
			
		||||
                model_urls['rec'].keys(), lang)
 | 
			
		||||
        use_inner_dict = False
 | 
			
		||||
        if postprocess_params.rec_char_dict_path is None:
 | 
			
		||||
            use_inner_dict = True
 | 
			
		||||
            postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
 | 
			
		||||
                'dict_path']
 | 
			
		||||
 | 
			
		||||
@ -263,7 +265,7 @@ class PaddleOCR(predict_system.TextSystem):
 | 
			
		||||
        if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
 | 
			
		||||
            logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
 | 
			
		||||
            sys.exit(0)
 | 
			
		||||
 | 
			
		||||
        if use_inner_dict:
 | 
			
		||||
            postprocess_params.rec_char_dict_path = str(
 | 
			
		||||
                Path(__file__).parent / postprocess_params.rec_char_dict_path)
 | 
			
		||||
 | 
			
		||||
@ -282,8 +284,13 @@ class PaddleOCR(predict_system.TextSystem):
 | 
			
		||||
        if isinstance(img, list) and det == True:
 | 
			
		||||
            logger.error('When input a list of images, det must be false')
 | 
			
		||||
            exit(0)
 | 
			
		||||
        if cls == False:
 | 
			
		||||
            self.use_angle_cls = False
 | 
			
		||||
        elif cls == True and self.use_angle_cls == False:
 | 
			
		||||
            logger.warning(
 | 
			
		||||
                'Since the angle classifier is not initialized, the angle classifier will not be uesd during the forward process'
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        self.use_angle_cls = cls
 | 
			
		||||
        if isinstance(img, str):
 | 
			
		||||
            # download net image
 | 
			
		||||
            if img.startswith('http'):
 | 
			
		||||
 | 
			
		||||
@ -38,7 +38,7 @@ class AttentionHead(nn.Layer):
 | 
			
		||||
        return input_ont_hot
 | 
			
		||||
 | 
			
		||||
    def forward(self, inputs, targets=None, batch_max_length=25):
 | 
			
		||||
        batch_size = inputs.shape[0]
 | 
			
		||||
        batch_size = paddle.shape(inputs)[0]
 | 
			
		||||
        num_steps = batch_max_length
 | 
			
		||||
 | 
			
		||||
        hidden = paddle.zeros((batch_size, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										2
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								setup.py
									
									
									
									
									
								
							@ -32,7 +32,7 @@ setup(
 | 
			
		||||
    package_dir={'paddleocr': ''},
 | 
			
		||||
    include_package_data=True,
 | 
			
		||||
    entry_points={"console_scripts": ["paddleocr= paddleocr.paddleocr:main"]},
 | 
			
		||||
    version='2.0.2',
 | 
			
		||||
    version='2.0.3',
 | 
			
		||||
    install_requires=requirements,
 | 
			
		||||
    license='Apache License 2.0',
 | 
			
		||||
    description='Awesome OCR toolkits based on PaddlePaddle (8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices',
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user