modify PP-OCRV5 inference data (#15942)

This commit is contained in:
guoshengjian 2025-07-03 12:01:58 +08:00 committed by GitHub
parent 2c286f1542
commit 257286d156
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 81 additions and 115 deletions

View File

@ -215,7 +215,7 @@ Unless otherwise specified:
- PP-OCRv4_mobile_det and PP-OCRv4_mobile_rec models are used.
- Document orientation classification, image correction, and text line orientation classification are not used.
- `text_det_limit_type` is set to `"min"` and `text_det_limit_side_len` to `732`.
- `text_det_limit_type` is set to `"min"` and `text_det_limit_side_len` to `736`.
### 1. Comparison of Inference Performance Between PP-OCRv5 and PP-OCRv4
@ -226,41 +226,24 @@ Unless otherwise specified:
| v5_server | Uses PP-OCRv5_server_det and PP-OCRv5_server_rec models. |
| v4_server | Uses PP-OCRv4_server_det and PP-OCRv4_server_rec models. |
**GPU, without high-performance inference:**
**GPU**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) | Avg. GPU Utilization (%) | Peak VRAM Usage (MB) | Avg. VRAM Usage (MB) |
| ------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- | ------------------------ | -------------------- | -------------------- |
| v5_mobile | 0.56 | 1162 | 106.02 | 1576.43 | 1420.83 | 18.95 | 4342.00 | 3258.95 |
| v4_mobile | 0.27 | 2246 | 111.20 | 1392.22 | 1318.76 | 28.90 | 1304.00 | 1166.46 |
| v5_server | 0.70 | 929 | 105.31 | 1634.85 | 1428.55 | 36.21 | 5402.00 | 4685.13 |
| v4_server | 0.44 | 1418 | 106.96 | 1455.34 | 1346.95 | 58.82 | 6760.00 | 5817.46 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| v5_mobile | 0.62 | 1054.23 | 106.35 | 1829.36 | 1521.92 | 17.42 | 4190.00 | 3114.02 |
| v4_mobile | 0.29 | 2062.53 | 112.21 | 1713.10 | 1456.14 | 26.53 | 1304.00 | 1166.68 |
| v5_server | 0.74 | 878.84 | 105.68 | 1899.80 | 1569.46 | 34.39 | 5402.00 | 4683.93 |
| v4_server | 0.47 | 1322.06 | 108.06 | 1773.10 | 1518.94 | 55.25 | 6760.67 | 5788.02 |
**GPU, with high-performance inference:**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) | Avg. GPU Utilization (%) | Peak VRAM Usage (MB) | Avg. VRAM Usage (MB) |
| ------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- | ------------------------ | -------------------- | -------------------- |
| v5_mobile | 0.50 | 1301 | 106.50 | 1338.12 | 1155.86 | 11.97 | 4112.00 | 3536.36 |
| v4_mobile | 0.21 | 2887 | 114.09 | 1113.27 | 1054.46 | 15.22 | 2072.00 | 1840.59 |
| v5_server | 0.60 | 1084 | 105.73 | 1980.73 | 1776.20 | 22.10 | 12150.00 | 11849.40 |
| v4_server | 0.36 | 1687 | 104.15 | 1186.42 | 1065.67 | 38.12 | 13058.00 | 12679.00 |
**CPU, without high-performance inference:**
**CPU**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) |
| ------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- |
| v5_mobile | 1.43 | 455 | 798.93 | 11695.40 | 6829.09 |
| v4_mobile | 1.09 | 556 | 813.16 | 11996.30 | 6834.25 |
| v5_server | 3.79 | 172 | 799.24 | 50216.00 | 27902.40 |
| v4_server | 4.22 | 148 | 803.74 | 51428.70 | 28593.60 |
**CPU, with high-performance inference:**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) |
| ------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- |
| v5_mobile | 1.14 | 571 | 339.68 | 3245.17 | 2560.55 |
| v4_mobile | 0.68 | 892 | 443.00 | 3057.38 | 2329.44 |
| v5_server | 3.56 | 183 | 797.03 | 45664.70 | 26905.90 |
| v4_server | 4.22 | 148 | 803.74 | 51428.70 | 28593.60 |
| v5_mobile | 1.75 | 371.82 | 965.89 | 2219.98 | 1830.97 |
| v4_mobile | 1.37 | 444.27 | 1007.33 | 2090.53 | 1797.76 |
| v5_server | 4.34 | 149.98 | 990.24 | 4020.85 | 3137.20 |
| v4_server | 5.42 | 115.20 | 999.03 | 4018.35 | 3105.29 |
> Note: PP-OCRv5 uses a larger dictionary in the recognition model, which increases inference time and causes slower performance compared to PP-OCRv4.
@ -272,21 +255,21 @@ Unless otherwise specified:
| with_textline | Includes text line orientation classification only. |
| with_all | Includes document orientation classification, image correction, and text line orientation classification. |
**GPU, without high-performance inference:**
**GPU**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) | Avg. GPU Utilization (%) | Peak VRAM Usage (MB) | Avg. VRAM Usage (MB) |
| -------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- | ------------------------ | -------------------- | -------------------- |
| base | 0.56 | 1162 | 106.02 | 1576.43 | 1420.83 | 18.95 | 4342.00 | 3258.95 |
| with_textline | 0.59 | 1104 | 105.58 | 1765.64 | 1478.53 | 19.48 | 4350.00 | 3267.77 |
| with_all | 1.02 | 600 | 104.92 | 1924.23 | 1628.50 | 10.96 | 2632.00 | 2217.01 |
| base | 0.62 | 1054.23 | 106.35 | 1829.36 | 1521.92 | 17.42 | 4190.00 | 3114.02 |
| with_textline | 0.64 | 1012.32 | 106.37 | 1867.69 | 1527.42 | 19.16 | 4198.00 | 3115.05 |
| with_all | 1.09 | 562.99 | 105.67 | 2381.53 | 1792.48 | 10.77 | 2480.00 | 2065.54 |
**CPU, without high-performance inference:**
**CPU**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) |
| -------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- |
| base | 1.43 | 455 | 798.93 | 11695.40 | 6829.09 |
| with_textline | 1.50 | 434 | 799.47 | 12007.20 | 6882.22 |
| with_all | 1.93 | 316 | 646.49 | 11759.60 | 6940.54 |
| base | 1.75 | 371.82 | 965.89 | 2219.98 | 1830.97 |
| with_textline | 1.87 | 347.61 | 972.08 | 2232.38 | 1822.13 |
| with_all | 3.13 | 195.25 | 828.37 | 2751.47 | 2179.70 |
> Note: Auxiliary features such as image unwarping can impact inference accuracy. More features do not necessarily yield better results and may increase resource usage.
@ -303,31 +286,32 @@ Unless otherwise specified:
| server_max_960 | Uses `max`, `side_len=960`. |
| server_max_640 | Uses `max`, `side_len=640`. |
**GPU, without high-performance inference:**
**GPU**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) | Avg. GPU Utilization (%) | Peak VRAM Usage (MB) | Avg. VRAM Usage (MB) |
| ----------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- | ------------------------ | -------------------- | -------------------- |
| mobile_min_1280 | 0.61 | 1071 | 109.12 | 1663.71 | 1439.72 | 19.27 | 4202.00 | 3550.32 |
| mobile_min_736 | 0.56 | 1162 | 106.02 | 1576.43 | 1420.83 | 18.95 | 4342.00 | 3258.95 |
| mobile_max_960 | 0.48 | 1313 | 103.49 | 1587.25 | 1395.48 | 19.37 | 2642.00 | 2319.03 |
| mobile_max_640 | 0.42 | 1436 | 103.07 | 1651.14 | 1422.62 | 18.95 | 2530.00 | 2149.11 |
| server_min_1280 | 0.82 | 795 | 107.17 | 1678.16 | 1428.94 | 40.43 | 10368.00 | 8320.43 |
| server_min_736 | 0.70 | 929 | 105.31 | 1634.85 | 1428.55 | 36.21 | 5402.00 | 4685.13 |
| server_max_960 | 0.59 | 1073 | 103.03 | 1590.19 | 1383.62 | 33.42 | 2928.00 | 2079.47 |
| server_max_640 | 0.54 | 1099 | 102.63 | 1602.09 | 1416.49 | 30.77 | 3152.00 | 2737.81 |
| mobile_min_1280 | 0.66 | 985.77 | 109.52 | 1878.74 | 1536.43 | 18.01 | 4050.00 | 3407.33 |
| mobile_min_736 | 0.62 | 1054.23 | 106.35 | 1829.36 | 1521.92 | 17.42 | 4190.00 | 3114.02 |
| mobile_max_960 | 0.52 | 1206.68 | 104.01 | 1795.27 | 1484.73 | 18.66 | 2490.00 | 2173.91 |
| mobile_max_640 | 0.45 | 1353.49 | 103.32 | 1728.91 | 1470.64 | 18.55 | 2378.00 | 1998.62 |
| server_min_1280 | 0.86 | 759.10 | 107.81 | 1876.31 | 1572.20 | 37.33 | 10368.00 | 8287.41 |
| server_min_736 | 0.74 | 878.84 | 105.68 | 1899.80 | 1569.46 | 34.39 | 5402.00 | 4683.93 |
| server_max_960 | 0.64 | 988.85 | 103.61 | 1831.31 | 1544.26 | 30.29 | 2929.33 | 2079.90 |
| server_max_640 | 0.57 | 1036.90 | 102.89 | 1838.36 | 1532.50 | 28.91 | 3153.33 | 2743.40 |
**CPU, without high-performance inference:**
**CPU**
| Configuration | Avg. Time per Image (s) | Avg. Characters Predicted per Second | Avg. CPU Utilization (%) | Peak RAM Usage (MB) | Avg. RAM Usage (MB) |
| ----------------- | ----------------------- | ------------------------------------ | ------------------------ | ------------------- | ------------------- |
| mobile_min_1280 | 1.64 | 398 | 799.45 | 12344.10 | 7100.60 |
| mobile_min_736 | 1.43 | 455 | 798.93 | 11695.40 | 6829.09 |
| mobile_max_960 | 1.21 | 521 | 800.13 | 11099.10 | 6369.49 |
| mobile_max_640 | 1.01 | 597 | 802.52 | 9585.48 | 5573.52 |
| server_min_1280 | 4.48 | 145 | 800.49 | 50683.10 | 28273.30 |
| server_min_736 | 3.79 | 172 | 799.24 | 50216.00 | 27902.40 |
| server_max_960 | 2.67 | 237 | 797.63 | 49362.50 | 26075.60 |
| server_max_640 | 2.36 | 251 | 795.18 | 45656.10 | 24900.80 |
| mobile_min_1280 | 2.00 | 326.44 | 976.83 | 2233.16 | 1867.94 |
| mobile_min_736 | 1.75 | 371.82 | 965.89 | 2219.98 | 1830.97 |
| mobile_max_960 | 1.49 | 422.62 | 969.11 | 2048.67 | 1677.82 |
| mobile_max_640 | 1.31 | 459.11 | 978.41 | 2023.25 | 1616.42 |
| server_min_1280 | 5.57 | 117.08 | 991.34 | 4452.39 | 3286.19 |
| server_min_736 | 4.34 | 149.98 | 990.24 | 4020.85 | 3137.20 |
| server_max_960 | 3.39 | 186.59 | 984.67 | 3492.62 | 2977.13 |
| server_max_640 | 2.95 | 201.00 | 980.59 | 3342.38 | 2935.24 |
# Deployment and Secondary Development
* **Multiple System Support**: Compatible with mainstream operating systems including Windows, Linux, and Mac.

View File

@ -217,7 +217,7 @@
- 使用 PP-OCRv4_mobile_det 和 PP-OCRv4_mobile_rec 模型。
- 不使用文档图像方向分类、文本图像矫正、文本行方向分类。
- 将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `732`。
- 将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `736`。
### 1. PP-OCRv5 与 PP-OCRv4 推理性能对比
@ -228,41 +228,23 @@
| v5_server | 使用 PP-OCRv5_server_det 和 PP-OCRv5_server_rec 模型。 |
| v4_server | 使用 PP-OCRv4_server_det 和 PP-OCRv4_server_rec 模型。 |
**GPU,不使用高性能推理**
**GPU**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB | 平均GPU利用率% | 峰值 VRAM 用量MB | 平均 VRAM 用量MB |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| v5_mobile | 0.56 | 1162 | 106.02 | 1576.43 | 1420.83 | 18.95 | 4342.00 | 3258.95 |
| v4_mobile | 0.27 | 2246 | 111.20 | 1392.22 | 1318.76 | 28.90 | 1304.00 | 1166.46 |
| v5_server | 0.70 | 929 | 105.31 | 1634.85 | 1428.55 | 36.21 | 5402.00 | 4685.13 |
| v4_server | 0.44 | 1418 | 106.96 | 1455.34 | 1346.95 | 58.82 | 6760.00 | 5817.46 |
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB | 平均 GPU 利用率(% | 峰值 VRAM 用量MB | 平均 VRAM 用量MB |
|-----------|------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| v5_mobile | 0.62 | 1054.23 | 106.35 | 1829.36 | 1521.92 | 17.42 | 4190.00 | 3114.02 |
| v4_mobile | 0.29 | 2062.53 | 112.21 | 1713.10 | 1456.14 | 26.53 | 1304.00 | 1166.68 |
| v5_server | 0.74 | 878.84 | 105.68 | 1899.80 | 1569.46 | 34.39 | 5402.00 | 4683.93 |
| v4_server | 0.47 | 1322.06 | 108.06 | 1773.10 | 1518.94 | 55.25 | 6760.67 | 5788.02 |
**GPU使用高性能推理**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB | 平均GPU利用率% | 峰值 VRAM 用量MB | 平均 VRAM 用量MB |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| v5_mobile | 0.50 | 1301 | 106.50 | 1338.12 | 1155.86 | 11.97 | 4112.00 | 3536.36 |
| v4_mobile | 0.21 | 2887 | 114.09 | 1113.27 | 1054.46 | 15.22 | 2072.00 | 1840.59 |
| v5_server | 0.60 | 1084 | 105.73 | 1980.73 | 1776.20 | 22.10 | 12150.00 | 11849.40 |
| v4_server | 0.36 | 1687 | 104.15 | 1186.42 | 1065.67 | 38.12 | 13058.00 | 12679.00 |
**CPU不使用高性能推理**
**CPU**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB |
| --- | --- | --- | --- | --- | --- |
| v5_mobile | 1.43 | 455 | 798.93 | 11695.40 | 6829.09 |
| v4_mobile | 1.09 | 556 | 813.16 | 11996.30 | 6834.25 |
| v5_server | 3.79 | 172 | 799.24 | 50216.00 | 27902.40 |
| v4_server | 4.22 | 148 | 803.74 | 51428.70 | 28593.60 |
**CPU使用高性能推理**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB |
| --- | --- | --- | --- | --- | --- |
| v5_mobile | 1.14 | 571 | 339.68 | 3245.17 | 2560.55 |
| v4_mobile | 0.68 | 892 | 443.00 | 3057.38 | 2329.44 |
| v5_server | 3.56 | 183 | 797.03 | 45664.70 | 26905.90 |
| v4_server | 4.22 | 148 | 803.74 | 51428.70 | 28593.60 |
| --------- | ---- | ------- | ------ | -------- | -------- |
| v5_mobile | 1.75 | 371.82 | 965.89 | 2219.98 | 1830.97 |
| v4_mobile | 1.37 | 444.27 | 1007.33 | 2090.53 | 1797.76 |
| v5_server | 4.34 | 149.98 | 990.24 | 4020.85 | 3137.20 |
| v4_server | 5.42 | 115.20 | 999.03 | 4018.35 | 3105.29 |
> 说明PP-OCRv5 的识别模型使用了更大的字典,需要更长的推理时间,导致 PP-OCRv5 的推理速度慢于 PP-OCRv4。
@ -274,21 +256,21 @@
| with_textline | 使用文本行方向分类,不使用文档图像方向分类、文本图像矫正。 |
| with_all | 使用文档图像方向分类、文本图像矫正、文本行方向分类。 |
**GPU,不使用高性能推理**
**GPU**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB | 平均GPU利用率% | 峰值 VRAM 用量MB | 平均 VRAM 用量MB |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| base | 0.56 | 1162 | 106.02 | 1576.43 | 1420.83 | 18.95 | 4342.00 | 3258.95 |
| with_textline | 0.59 | 1104 | 105.58 | 1765.64 | 1478.53 | 19.48 | 4350.00 | 3267.77 |
| with_all | 1.02 | 600 | 104.92 | 1924.23 | 1628.50 | 10.96 | 2632.00 | 2217.01 |
| base | 0.62 | 1054.23 | 106.35 | 1829.36 | 1521.92 | 17.42 | 4190.00 | 3114.02 |
| with_textline | 0.64 | 1012.32 | 106.37 | 1867.69 | 1527.42 | 19.16 | 4198.00 | 3115.05 |
| with_all | 1.09 | 562.99 | 105.67 | 2381.53 | 1792.48 | 10.77 | 2480.00 | 2065.54 |
**CPU,不使用高性能推理**
**CPU**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB |
| --- | --- | --- | --- | --- | --- |
| base | 1.43 | 455 | 798.93 | 11695.40 | 6829.09 |
| with_textline | 1.50 | 434 | 799.47 | 12007.20 | 6882.22 |
| with_all | 1.93 | 316 | 646.49 | 11759.60 | 6940.54 |
| base | 1.75 | 371.82 | 965.89 | 2219.98 | 1830.97 |
| with_textline | 1.87 | 347.61 | 972.08 | 2232.38 | 1822.13 |
| with_all | 3.13 | 195.25 | 828.37 | 2751.47 | 2179.70 |
> 说明:文本图像矫正等辅助功能会对端到端推理精度造成影响,因此并不一定使用的辅助功能越多、资源用量越大。
@ -297,39 +279,39 @@
| 配置 | 说明 |
| --- | --- |
| mobile_min_1280 | 使用 PP-OCRv5_mobile_det 和 PP-OCRv5_mobile_rec 模型,将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `1280`。 |
| mobile_min_736 | 使用 PP-OCRv5_mobile_det 和 PP-OCRv5_mobile_rec 模型,将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `1280`。 |
| mobile_min_736 | 使用 PP-OCRv5_mobile_det 和 PP-OCRv5_mobile_rec 模型,将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `736`。 |
| mobile_max_960 | 使用 PP-OCRv5_mobile_det 和 PP-OCRv5_mobile_rec 模型,将 `text_det_limit_type` 设置为 `"max"``text_det_limit_side_len` 设置为 `960`。 |
| mobile_max_640 | 使用 PP-OCRv5_mobile_det 和 PP-OCRv5_mobile_rec 模型,将 `text_det_limit_type` 设置为 `"max"``text_det_limit_side_len` 设置为 `640`。 |
| server_min_1280 | 使用 PP-OCRv5_server_det 和 PP-OCRv5_server_rec 模型,将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `1280`。 |
| server_min_736 | 使用 PP-OCRv5_server_det 和 PP-OCRv5_server_rec 模型,将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `1280`。 |
| server_min_736 | 使用 PP-OCRv5_server_det 和 PP-OCRv5_server_rec 模型,将 `text_det_limit_type` 设置为 `"min"``text_det_limit_side_len` 设置为 `736`。 |
| server_max_960 | 使用 PP-OCRv5_server_det 和 PP-OCRv5_server_rec 模型,将 `text_det_limit_type` 设置为 `"max"``text_det_limit_side_len` 设置为 `960`。 |
| server_max_640 | 使用 PP-OCRv5_server_det 和 PP-OCRv5_server_rec 模型,将 `text_det_limit_type` 设置为 `"max"``text_det_limit_side_len` 设置为 `640`。 |
**GPU,不使用高性能推理**
**GPU**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB | 平均GPU利用率% | 峰值 VRAM 用量MB | 平均 VRAM 用量MB |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| mobile_min_1280 | 0.61 | 1071 | 109.12 | 1663.71 | 1439.72 | 19.27 | 4202.00 | 3550.32 |
| mobile_min_736 | 0.56 | 1162 | 106.02 | 1576.43 | 1420.83 | 18.95 | 4342.00 | 3258.95 |
| mobile_max_960 | 0.48 | 1313 | 103.49 | 1587.25 | 1395.48 | 19.37 | 2642.00 | 2319.03 |
| mobile_max_640 | 0.42 | 1436 | 103.07 | 1651.14 | 1422.62 | 18.95 | 2530.00 | 2149.11 |
| server_min_1280 | 0.82 | 795 | 107.17 | 1678.16 | 1428.94 | 40.43 | 10368.00 | 8320.43 |
| server_min_736 | 0.70 | 929 | 105.31 | 1634.85 | 1428.55 | 36.21 | 5402.00 | 4685.13 |
| server_max_960 | 0.59 | 1073 | 103.03 | 1590.19 | 1383.62 | 33.42 | 2928.00 | 2079.47 |
| server_max_640 | 0.54 | 1099 | 102.63 | 1602.09 | 1416.49 | 30.77 | 3152.00 | 2737.81 |
| mobile_min_1280 | 0.66 | 985.77 | 109.52 | 1878.74 | 1536.43 | 18.01 | 4050.00 | 3407.33 |
| mobile_min_736 | 0.62 | 1054.23 | 106.35 | 1829.36 | 1521.92 | 17.42 | 4190.00 | 3114.02 |
| mobile_max_960 | 0.52 | 1206.68 | 104.01 | 1795.27 | 1484.73 | 18.66 | 2490.00 | 2173.91 |
| mobile_max_640 | 0.45 | 1353.49 | 103.32 | 1728.91 | 1470.64 | 18.55 | 2378.00 | 1998.62 |
| server_min_1280 | 0.86 | 759.10 | 107.81 | 1876.31 | 1572.20 | 37.33 | 10368.00 | 8287.41 |
| server_min_736 | 0.74 | 878.84 | 105.68 | 1899.80 | 1569.46 | 34.39 | 5402.00 | 4683.93 |
| server_max_960 | 0.64 | 988.85 | 103.61 | 1831.31 | 1544.26 | 30.29 | 2929.33 | 2079.90 |
| server_max_640 | 0.57 | 1036.90 | 102.89 | 1838.36 | 1532.50 | 28.91 | 3153.33 | 2743.40 |
**CPU,不使用高性能推理**
**CPU**
| 配置 | 平均每图耗时s | 平均每秒预测字符数量 | 平均 CPU 利用率(% | 峰值 RAM 用量MB | 平均 RAM 用量MB |
| --- | --- | --- | --- | --- | --- |
| mobile_min_1280 | 1.64 | 398 | 799.45 | 12344.10 | 7100.60 |
| mobile_min_736 | 1.43 | 455 | 798.93 | 11695.40 | 6829.09 |
| mobile_max_960 | 1.21 | 521 | 800.13 | 11099.10 | 6369.49 |
| mobile_max_640 | 1.01 | 597 | 802.52 | 9585.48 | 5573.52 |
| server_min_1280 | 4.48 | 145 | 800.49 | 50683.10 | 28273.30 |
| server_min_736 | 3.79 | 172 | 799.24 | 50216.00 | 27902.40 |
| server_max_960 | 2.67 | 237 | 797.63 | 49362.50 | 26075.60 |
| server_max_640 | 2.36 | 251 | 795.18 | 45656.10 | 24900.80 |
| mobile_min_1280 | 2.00 | 326.44 | 976.83 | 2233.16 | 1867.94 |
| mobile_min_736 | 1.75 | 371.82 | 965.89 | 2219.98 | 1830.97 |
| mobile_max_960 | 1.49 | 422.62 | 969.11 | 2048.67 | 1677.82 |
| mobile_max_640 | 1.31 | 459.11 | 978.41 | 2023.25 | 1616.42 |
| server_min_1280 | 5.57 | 117.08 | 991.34 | 4452.39 | 3286.19 |
| server_min_736 | 4.34 | 149.98 | 990.24 | 4020.85 | 3137.20 |
| server_max_960 | 3.39 | 186.59 | 984.67 | 3492.62 | 2977.13 |
| server_max_640 | 2.95 | 201.00 | 980.59 | 3342.38 | 2935.24 |
# 五、部署与二次开发