Merge pull request #5948 from tink2123/cherry-pick-serving

[cherry-pick] update readme and add bbox in result
This commit is contained in:
xiaoting 2022-04-26 11:34:50 +08:00 committed by GitHub
commit 33c99d29fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 521 additions and 19 deletions

View File

@ -36,7 +36,6 @@ PaddleOCR operating environment and Paddle Serving operating environment are nee
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md). 1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2. Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2.
2. The steps of PaddleServing operating environment prepare are as follows: 2. The steps of PaddleServing operating environment prepare are as follows:
@ -194,6 +193,52 @@ The recognition model is the same.
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0] 2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
``` ```
## C++ Serving
Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version.
The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests.
| Language | Speed | Secondary development | Do you need to compile |
|-----|-----|---------|------------|
| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
| python | general | easy | single-model/multi-model no compilation required |
1. Compile Serving
To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)
2. Run the following command to start the service.
```
# Start the service and save the running log in log.txt
python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
```
After the service is successfully started, a log similar to the following will be printed in log.txt
![](./imgs/start_server.png)
3. Send service request
Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified
Change the feed_type field and shape field in ppocrv2_det_client/serving_client_conf.prototxt to the following:
```
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 20
shape: 1
}
```
start the client:
```
python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
```
After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
![](./imgs/results.png)
## WINDOWS Users ## WINDOWS Users
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md) Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md)

View File

@ -6,6 +6,7 @@ PaddleOCR提供2种服务部署方式
- 基于PaddleHub Serving的部署代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md) - 基于PaddleHub Serving的部署代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md)
- 基于PaddleServing的部署代码路径为"`./deploy/pdserving`",按照本教程使用。 - 基于PaddleServing的部署代码路径为"`./deploy/pdserving`",按照本教程使用。
# 基于PaddleServing的服务部署 # 基于PaddleServing的服务部署
本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PP-OCR动态图模型的pipeline在线服务。 本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PP-OCR动态图模型的pipeline在线服务。
@ -17,6 +18,8 @@ PaddleOCR提供2种服务部署方式
更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。 更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。
AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](https://aistudio.baidu.com/aistudio/projectdetail/3630726)。
## 目录 ## 目录
- [环境准备](#环境准备) - [环境准备](#环境准备)
- [模型转换](#模型转换) - [模型转换](#模型转换)
@ -30,7 +33,6 @@ PaddleOCR提供2种服务部署方式
需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。 需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。
- 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md) - 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md)
根据环境下载对应的paddlepaddle whl包推荐安装2.2.2版本
- 准备PaddleServing的运行环境步骤如下 - 准备PaddleServing的运行环境步骤如下
@ -132,7 +134,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
python3 pipeline_http_client.py python3 pipeline_http_client.py
``` ```
成功运行后模型预测的结果会打印在cmd窗口中结果示例为 成功运行后模型预测的结果会打印在cmd窗口中结果示例为
![](./imgs/results.png) ![](./imgs/pipeline_result.png)
调整 config.yml 中的并发个数获得最大的QPS, 一般检测和识别的并发数为21 调整 config.yml 中的并发个数获得最大的QPS, 一般检测和识别的并发数为21
``` ```
@ -187,6 +189,73 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0] 2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
``` ```
<a name="C++"></a>
## Paddle Serving C++ 部署
基于python的服务部署显然具有二次开发便捷的优势然而真正落地应用往往需要追求更优的性能。PaddleServing 也提供了性能更优的C++部署版本。
C++ 服务部署在环境搭建和数据准备阶段与 python 相同,区别在于启动服务和客户端发送请求时不同。
| 语言 | 速度 | 二次开发 | 是否需要编译 |
|-----|-----|---------|------------|
| C++ | 很快 | 略有难度 | 单模型预测无需编译,多模型串联需要编译 |
| python | 一般 容易 | 单模型/多模型 均无需编译|
1. 准备 Serving 环境
为了提高预测性能C++ 服务同样提供了多模型串联服务。与python pipeline服务不同多模型串联的过程中需要将模型前后处理代码写在服务端因此需要在本地重新编译生成serving。
首先需要下载Serving代码库, 把OCR文本检测预处理相关代码替换到Serving库中
```
git clone https://github.com/PaddlePaddle/Serving
cp -rf general_detection_op.cpp Serving/core/general-server/op
```
具体可参考官方文档:[如何编译Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md),注意需要开启 WITH_OPENCV 选项。
完成编译后注意要安装编译出的三个whl包并设置SERVING_BIN环境变量。
2. 启动服务可运行如下命令:
一个服务启动两个模型串联,只需要在--model后依次按顺序传入模型文件夹的相对路径且需要在--op后依次传入自定义C++OP类名称
```
# 启动服务运行日志保存在log.txt
python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
```
成功启动服务后log.txt中会打印类似如下日志
![](./imgs/start_server.png)
3. 发送服务请求:
由于需要在C++Server部分进行前后处理为了加速传入C++Server的仅仅是图片的base64编码的字符串故需要手动修改
ppocrv2_det_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容:
```
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 20
shape: 1
}
```
启动客户端
```
python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
```
成功运行后模型预测的结果会打印在cmd窗口中结果示例为
![](./imgs/results.png)
在浏览器中输入服务器 ip:端口号可以看到当前服务的实时QPS。(端口号范围需要是8000-9000)
在200张真实图片上测试把检测长边限制为960。T4 GPU 上 QPS 峰值可达到51左右,约为pipeline的 2.12 倍。
![](./imgs/c++_qps.png)
<a name="Windows用户"></a> <a name="Windows用户"></a>
## Windows用户 ## Windows用户

View File

@ -0,0 +1,367 @@
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_detection_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
*/
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralDetectionOp::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
output_blob->_batch_size = batch_size;
std::vector<int> input_shape;
int in_num = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
size_t databuf_size = 0;
// now only support single string
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
float ratio_h{};
float ratio_w{};
cv::Mat img = Base2Mat(base64str);
cv::Mat srcimg;
cv::Mat resize_img;
cv::Mat resize_img_rec;
cv::Mat crop_img;
img.copyTo(srcimg);
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_det, this->scale_det,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
for (int i = 0; i < in->size(); ++i) {
input_shape = {1, 3, resize_img.rows, resize_img.cols};
in_num = std::accumulate(input_shape.begin(), input_shape.end(), 1,
std::multiplies<int>());
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = in->at(i).name;
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
tensor_in.lod = in->at(i).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
}
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
delete real_in;
std::vector<int> output_shape;
int out_num = 0;
void *databuf_data_out = NULL;
char *databuf_char_out = NULL;
size_t databuf_size_out = 0;
// this is special add for PaddleOCR postprecess
int infer_outnum = out->size();
for (int k = 0; k < infer_outnum; ++k) {
int n2 = out->at(k).shape[2];
int n3 = out->at(k).shape[3];
int n = n2 * n3;
float *out_data = static_cast<float *>(out->at(k).data.data());
std::vector<float> pred(n, 0.0);
std::vector<unsigned char> cbuf(n, ' ');
for (int i = 0; i < n; i++) {
pred[i] = float(out_data[i]);
cbuf[i] = (unsigned char)((out_data[i]) * 255);
}
cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
const double threshold = this->det_db_thresh_ * 255;
const double maxvalue = 255;
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
cv::Mat dilation_map;
cv::Mat dila_ele =
cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
cv::dilate(bit_map, dilation_map, dila_ele);
boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map,
this->det_db_box_thresh_,
this->det_db_unclip_ratio_);
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
float max_wh_ratio = 0.0f;
std::vector<cv::Mat> crop_imgs;
std::vector<cv::Mat> resize_imgs;
int max_resize_w = 0;
int max_resize_h = 0;
int box_num = boxes.size();
std::vector<std::vector<float>> output_rec;
for (int i = 0; i < box_num; ++i) {
cv::Mat line_img = GetRotateCropImage(img, boxes[i]);
float wh_ratio = float(line_img.cols) / float(line_img.rows);
max_wh_ratio = max_wh_ratio > wh_ratio ? max_wh_ratio : wh_ratio;
crop_imgs.push_back(line_img);
}
for (int i = 0; i < box_num; ++i) {
cv::Mat resize_img;
crop_img = crop_imgs[i];
this->resize_op_rec.Run(crop_img, resize_img, max_wh_ratio,
this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_rec, this->scale_rec,
this->is_scale_);
max_resize_w = std::max(max_resize_w, resize_img.cols);
max_resize_h = std::max(max_resize_h, resize_img.rows);
resize_imgs.push_back(resize_img);
}
int buf_size = 3 * max_resize_h * max_resize_w;
output_rec = std::vector<std::vector<float>>(
box_num, std::vector<float>(buf_size, 0.0f));
for (int i = 0; i < box_num; ++i) {
resize_img_rec = resize_imgs[i];
this->permute_op_.Run(&resize_img_rec, output_rec[i].data());
}
// Inference.
output_shape = {box_num, 3, max_resize_h, max_resize_w};
out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
databuf_size_out = out_num * sizeof(float);
databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
if (!databuf_data_out) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
return -1;
}
int offset = buf_size * sizeof(float);
for (int i = 0; i < box_num; ++i) {
memcpy(databuf_data_out + i * offset, output_rec[i].data(), offset);
}
databuf_char_out = reinterpret_cast<char *>(databuf_data_out);
paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
paddle::PaddleTensor tensor_out;
tensor_out.name = "x";
tensor_out.dtype = paddle::PaddleDType::FLOAT32;
tensor_out.shape = output_shape;
tensor_out.data = paddleBuf;
out->push_back(tensor_out);
}
out->erase(out->begin(), out->begin() + infer_outnum);
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
cv::Mat GeneralDetectionOp::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string GeneralDetectionOp::base64Decode(const char *Data, int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
cv::Mat
GeneralDetectionOp::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
DEFINE_OP(GeneralDetectionOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

Binary file not shown.

After

Width:  |  Height:  |  Size: 493 KiB

View File

@ -45,10 +45,8 @@ for img_file in os.listdir(test_img_dir):
image_data = file.read() image_data = file.read()
image = cv2_to_base64(image_data) image = cv2_to_base64(image_data)
res_list = [] res_list = []
#print(image)
fetch_map = client.predict( fetch_map = client.predict(
feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True) feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
print("fetrch map:", fetch_map)
one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True) one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True)
for res in one_batch_res: for res in one_batch_res:
res_list.append(res[0]) res_list.append(res[0])

View File

@ -34,12 +34,28 @@ test_img_dir = args.image_dir
for idx, img_file in enumerate(os.listdir(test_img_dir)): for idx, img_file in enumerate(os.listdir(test_img_dir)):
with open(os.path.join(test_img_dir, img_file), 'rb') as file: with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read() image_data1 = file.read()
# print file name
print('{}{}{}'.format('*' * 10, img_file, '*' * 10))
image = cv2_to_base64(image_data1) image = cv2_to_base64(image_data1)
for i in range(1): data = {"key": ["image"], "value": [image]}
data = {"key": ["image"], "value": [image]} r = requests.post(url=url, data=json.dumps(data))
r = requests.post(url=url, data=json.dumps(data)) result = r.json()
print(r.json()) print("erro_no:{}, err_msg:{}".format(result["err_no"], result["err_msg"]))
# check success
if result["err_no"] == 0:
ocr_result = result["value"][0]
try:
for item in eval(ocr_result):
# return transcription and points
print("{}, {}".format(item[0], item[1]))
except Exception as e:
print("No results")
continue
else:
print(
"For details about error message, see PipelineServingLogs/pipeline.log"
)
print("==> total number of test imgs: ", len(os.listdir(test_img_dir))) print("==> total number of test imgs: ", len(os.listdir(test_img_dir)))

View File

@ -15,6 +15,7 @@ from paddle_serving_server.web_service import WebService, Op
import logging import logging
import numpy as np import numpy as np
import copy
import cv2 import cv2
import base64 import base64
# from paddle_serving_app.reader import OCRReader # from paddle_serving_app.reader import OCRReader
@ -36,7 +37,7 @@ class DetOp(Op):
self.filter_func = FilterBoxes(10, 10) self.filter_func = FilterBoxes(10, 10)
self.post_func = DBPostProcess({ self.post_func = DBPostProcess({
"thresh": 0.3, "thresh": 0.3,
"box_thresh": 0.5, "box_thresh": 0.6,
"max_candidates": 1000, "max_candidates": 1000,
"unclip_ratio": 1.5, "unclip_ratio": 1.5,
"min_size": 3 "min_size": 3
@ -79,8 +80,10 @@ class RecOp(Op):
raw_im = input_dict["image"] raw_im = input_dict["image"]
data = np.frombuffer(raw_im, np.uint8) data = np.frombuffer(raw_im, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR) im = cv2.imdecode(data, cv2.IMREAD_COLOR)
dt_boxes = input_dict["dt_boxes"] self.dt_list = input_dict["dt_boxes"]
dt_boxes = self.sorted_boxes(dt_boxes) self.dt_list = self.sorted_boxes(self.dt_list)
# deepcopy to save origin dt_boxes
dt_boxes = copy.deepcopy(self.dt_list)
feed_list = [] feed_list = []
img_list = [] img_list = []
max_wh_ratio = 0 max_wh_ratio = 0
@ -126,25 +129,29 @@ class RecOp(Op):
imgs[id] = norm_img imgs[id] = norm_img
feed = {"x": imgs.copy()} feed = {"x": imgs.copy()}
feed_list.append(feed) feed_list.append(feed)
return feed_list, False, None, "" return feed_list, False, None, ""
def postprocess(self, input_dicts, fetch_data, data_id, log_id): def postprocess(self, input_dicts, fetch_data, data_id, log_id):
res_list = [] rec_list = []
dt_num = len(self.dt_list)
if isinstance(fetch_data, dict): if isinstance(fetch_data, dict):
if len(fetch_data) > 0: if len(fetch_data) > 0:
rec_batch_res = self.ocr_reader.postprocess( rec_batch_res = self.ocr_reader.postprocess(
fetch_data, with_score=True) fetch_data, with_score=True)
for res in rec_batch_res: for res in rec_batch_res:
res_list.append(res[0]) rec_list.append(res)
elif isinstance(fetch_data, list): elif isinstance(fetch_data, list):
for one_batch in fetch_data: for one_batch in fetch_data:
one_batch_res = self.ocr_reader.postprocess( one_batch_res = self.ocr_reader.postprocess(
one_batch, with_score=True) one_batch, with_score=True)
for res in one_batch_res: for res in one_batch_res:
res_list.append(res[0]) rec_list.append(res)
result_list = []
res = {"res": str(res_list)} for i in range(dt_num):
text = rec_list[i]
dt_box = self.dt_list[i]
result_list.append([text, dt_box.tolist()])
res = {"result": str(result_list)}
return res, None, "" return res, None, ""